The Polarised Target at CBELSA/TAPS Dubna Exchange Week

M. Bornstein, E. Brinkmann, H. Dutz, S. Goertz, S. Reeve, S. Runkel*

Physikalisches Institut - Universität Bonn

7th March, 2018

= 990

くロン く伺い くヨン くヨン

γ		Target		
		х	у	Z
Unpolarised	σ	0	Т	0
Linear pol.	-Σ	н	- P	$-\mathbf{G}$
Circular pol.	0	F	0	$-\mathbf{E}$

イロト イロト イヨト イヨト

$$\begin{aligned} \frac{\mathrm{d}\boldsymbol{\sigma}}{\mathrm{d}\Omega}\left(\vartheta, \ \phi\right) &= \frac{\mathrm{d}\boldsymbol{\sigma}}{\mathrm{d}\Omega}\left(\vartheta\right) \left[1 - P_T \boldsymbol{\Sigma}\left(\vartheta\right) \cos\left(2\phi\right) \\ &+ P_x \left(-P_T \mathbf{H}\left(\vartheta\right) \sin\left(2\phi\right) + P_\circ \mathbf{F}\left(\vartheta\right)\right) \\ &- P_y \left(P_T \mathbf{P}\left(\vartheta\right) \cos\left(2\phi\right) - \mathbf{T}\left(\vartheta\right)\right) \\ &- P_z \left(-P_T \mathbf{G}\left(\vartheta\right) \sin\left(2\phi\right) + P_\circ \mathbf{E}\left(\vartheta\right)\right)\right]. \end{aligned}$$

Stefan Runkel (PI Bonn)

:▶ 툴 ∽९९ 07.03.2018 2/23

07.03.2018 3 / 23

Work in 2017

- Merging the Dubna/Mainz and Bonn Systems.
- February Transport of the cryostat, the ³*He*-system, temperature measurement to Bonn.
 - Connecting the vacuum system.
 - Leak test at room temperature.
 - Change Front part of the cryostat.
 - Implement the Dubna/Mainz DAQ in the Bonn system.

…

May First cooling test. $T_{min} = 60 \text{ mK}.$

September Test of all components, $T_{min} < 30 \text{ mK}$ $P_{max} \approx 45 \%$.

November First data taking.

⇒ The Bonn/Dubna/Mainz polarised frozen-spin target is operational and can be used for the next measurements.

Butanol-Polarization

Stefan Runkel (PI Bonn)

The Polarised target at CBELSA/TAPS

07.03.2018 5/23

- Current measurements in Bonn with the Dubna/Mainz frozen-spin target.
- A new frozen-spin cryostat is under construction by JINR Dubna. (Part of the discussions at this meeting)
- A continuous mode Target is under construction by Bonn.

4π -continuous Target

Design conditions:

- Current of 90 A for internal, longitudinal polarisation-magnet.
- Cooling power of 100 mW at 200 mK for DNP.
- Minimal temperature 30 mK for transversal polarised targets.

Internal polarisation magnet - Production (M. Bornstein)

- Carrier thickness + wire < 2 mm</p>
- NbTi, = 0.254 mm (j_{el} = 2185 A mm⁻²)
- 6 × 590 windings @90 A @ 1 K
 + 2 × 9 windings for each notch
- ▶ $|\Delta B/B_0| \le 4 \times 10^{-5}$
- Inductance L = 160 mH
- Stored energy E = 650 J
- Building process by wet wiring.
- Wires are fixed by cryogenic epoxy.
- $V_{\rm hom}/V_{\rm overall} = 1/40$

Internal polarisation magnet - Tests (M. Bornstein)

07.03.2018 10 / 23

A D F A B F A B F A B

4π -continuous Target

■▶ ■ つへで 07.03.2018 11/23

Precooling

- ▶ Four heat exchangers and two heat sunks to cool and liquefy the circulating mixture.
- ▶ HE4 inside the evaporator to ensure 1 K after the precooling stages.
- Circulating ³He-⁴He-mixture cooled by ⁴He from the heat sinks and by evaporating mixture from the dilution unit.

- ► HE1 HE3 counterflow heat exchangers with more than two streams.
- Calculations of the precooling stages only with simple models for two stream heat exchangers.

Precooling

► The heat exchange between the different streams and the solid is given by:

$$\dot{Q}_{\text{solid}}(\Delta T_{\text{m}}) = \alpha \cdot A \Delta T_{\text{m}} \quad \text{mit} \quad \alpha \propto \text{Nu}(\text{Re}, \text{Pr}) \cdot \frac{\lambda}{L}.$$

- NUSSELT-, PRANDLT- and REYNOLDS-number are characteristic flow parameter depending on the geometry
- Characteristic flow parameter given by the dimensionless NAVIER-STOKES equations.
- Idea: Solve the NAVIER-STOKES equations with a finite-volume-method.

 \Rightarrow CFD-Simulation

Computational Fluid Dynamics

The basis of almost all CFD simulations is

ρ: density

 φ: fluid dynamic parameter (e.g. fluid velocity <u>u</u>, enthalpy h)

$$\frac{\partial}{\partial t} \left(\rho \phi \right) + \underbrace{\nabla \cdot \left(\rho \underline{u} \phi \right)}_{F_{\phi}} = D_{\phi} + Q_{\phi}.$$

GI.	ϕ	D_{ϕ}	Q_{ϕ}
1. KON	1	0	0
2. IMP	<u>u</u>	$\nabla \cdot \underline{a}$	$-\nabla \cdot \mathbf{p} + \rho \underline{g}$
3. ENG	h	$\nabla(k\nabla T)$	$\frac{\partial p}{\partial t} + \underline{u} \cdot \nabla \rho + \nabla \cdot \left(\underline{\underline{\tau}} \cdot \underline{u}\right)$

- F F_{ϕ} : convective flow, describes the transport of the stream given by ϕ
- D_{ϕ} : diffusive flow, describes the changes in space given by ϕ
- ▶ Q_{ϕ} : all other distributions given by ϕ

 \Rightarrow Using openFOAM with snappyHexMesh for the simulation and the creation of the mesh.

Computational Fluid Dynamics

Compressible Fluid:

1. Mass:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \underline{u}) = \mathbf{0}$$

2. Motion:

$$\frac{\partial}{\partial t} \left(\rho \underline{u} \right) + \nabla \cdot \left(\rho \underline{u} \underline{u} \right) = \nabla \cdot \underline{a} - \nabla p + \rho \underline{g}$$

 $\frac{\partial \rho h}{\partial t} + \nabla \cdot (\rho \underline{u} h) = \frac{\partial p}{\partial t} + \underline{u} \cdot \nabla p + \nabla (k \nabla T) + \nabla \cdot \left(\underline{\underline{\tau}} \cdot \underline{u}\right)$

Equations of state (e. g. ideal gas):

 $p = \rho RT$ $dh = c_{\rm p} dT$

Specific material equations:

 $\dot{Q} = -k\nabla T$

Stress-tensor:

$$\underline{\boldsymbol{\sigma}} = \eta \left[2\underline{\boldsymbol{S}} - \frac{2}{3} \left(\nabla \cdot \underline{\boldsymbol{u}} \right) \underline{\boldsymbol{\delta}} \right]$$
$$\underline{\boldsymbol{S}} = \frac{1}{2} \left[\nabla \underline{\boldsymbol{u}} + \left(\nabla \underline{\boldsymbol{u}} \right)^T \right]$$
$$\underline{\underline{\tau}} = \underline{\boldsymbol{\sigma}} + p \mathbb{1}$$

+ = + + = + + = + + = = =

3. Enthalpy:

Heat Exchanger 1

UNIVERSITÄT BONN

- Data for $\dot{n}_{^{3}\text{He}} = 1 \text{ mmol s}^{-1}$.
- Well defined temperature gradient along the heat exchanger.
- Temperature after the last stage of 8 K is reached.
- Simulation performed for all heat exchangers and a circulation rate of 1 to 20 mmol s⁻¹.

• • • • • • • • • • • •

	Simulation	Measurement
HE1 _{in}	170(2) K	170(5) K
HE1 _{middle}	43 K	43(3) K
HE1 _{out}	8K	8(1) K
$p_{^{3}\text{He}_{in}}$	100 mbar	105(10) mbar
$p_{^{3}\text{He}_{out}}$	$2.1 imes 10^{-2} \text{mbar}$	$2.2(2) \times 10^{-2}$ mbar
$p_{\rm ^4He_{out}}$	15 mbar	15(3) mbar

Heat Exchanger 1

Temperature gradient along first stage:

 \Rightarrow Laminar flow through turbine stage.

Stefan Runkel	(PI Bonn)
---------------	-----------

The Polarised target at CBELSA/TAPS

Heat exchanger 1 & 2 are in series. Thus, they can be seen as one unit.

- ⁴He-flowrate necessary to cool the circulating ³He-⁴He-mixture to the temperature of the separator.
- ▶ First tests done with ⁴He, simulation performed up to 15 % ⁴He in circulating ³He.

Heat Exchanger 3

- Condenser: phase-boundary between liquid and gas not included in the mesh.
- ⁴He_{in}, gets superfluid.
 - Only the change in the heat capacity is included.
 - Heat conductivity and viscosity has to be implemented.
- ▶ ⁴He from the evaporator at a higher temperature as calculated.

Polymers - Target Materials (S. Reeve)

- High number of "free" protons.
- Spinless background contribution: carbon.
- κ depends on the target holder geometry.
- ▶ New target geometry improves $\kappa \approx 55 \% \rightarrow \kappa > 80 \%$

• • • • • • • • • • • • • •

07.03.2018 21 / 23

Polymers - Target Materials, 1 K Polarisation (S. Reeve)

- All samples irradiated with the same dose.
- P_{max} increases to higher irradiation temperatures.
- Material specific asymmetry, source still unknown.
- P_{max} ≈ 20 % at 1 K and 2.5 T is a very satisfactory result!
- ► Relaxation-times: 2.5 h ≤ τ ≥ 12 h depending on the irradiation temperature.
- \Rightarrow Tests in a dilution cryostat.

Irradiation temperature [K]

A A > < F</p>

Summary & Outlook

- 2017 the Dubna/Mainz dilution cryostat was send to Bonn and integrated in the Bonn control system.
- First data taking was possible in November/December last year.
- A new frozen-spin dilution cryostat for Bonn is under construction by JINR Dubna.

- Ongoing measurements at CBELSA with the actual setup.
- Finish the assembling of the new frozen spin target.

Summary & Outlook

- 2017 the Dubna/Mainz dilution cryostat was send to Bonn and integrated in the Bonn control system.
- First data taking was possible in November/December last year.
- A new frozen-spin dilution cryostat for Bonn is under construction by JINR Dubna.
- An internal polarisation magnet for a new continuous target was successfully tested. A continuous polarised target at 1.8 T to 2 T is possible.
- First tests of the new continuous mode dilution cryostat were done and compared to the existing simulation data.
- The data of the precooling stages fits well to the simulation data. (Excluding HE3, where some deviations were expected.)
- Promising data at 1 K for irradiated polyethylene and polypropylene as a new target material.
- Ongoing measurements at CBELSA with the actual setup.
- Finish the assembling of the new frozen spin target.
- Building an internal polarisation magnet with 2.5 T.
- Preparing first tests of the continuous dilution refrigerator in Bonn.
- Test the new target materials at temperatures around 200 mK.

