B-physics in ATLAS: decays

Vladimir LYUBUSHKIN

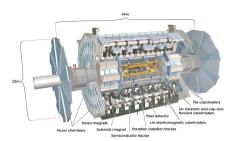
March 14, 2018

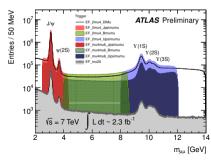
Laboratory of Nuclear Problems, JINR

Outline

- Time dependent flavour-tagged ϕ_s and $\Delta\Gamma_s$ from $B_s^0 \to J/\psi \phi$ in Run1; JHEP **1608**, 147 (2016)
- Measurement of the relative width difference of the $B^0-\bar{B}^0$ system; JHEP **1606**, 081 (2016)
- Measurement of the parity-violating asymmetry parameter α_b and the helicity amplitudes for the decay $\Lambda_b^0 \to J/\psi \Lambda^0$; Phys. Rev. D 89, no. 9, 092009 (2014)
- Branching ratio $\Gamma(\Lambda_b^0 \to \psi(2S)\Lambda^0)/\Gamma(\Lambda_b^0 \to J/\psi\Lambda^0)$; Phys. Lett. B **751**, 63 (2015)
- Search for tetraquark states $X(4140,...) \rightarrow J/\psi \phi$.

1

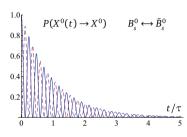

ATLAS detector and trigger system

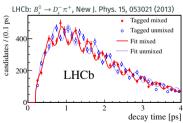

ATLAS: general purpose detector:

- Subsystems essential for B-physics: Inner detector and Muon spectrometer,
- Inner detector: tracking, momentum and vertexing, $|\eta| < 2.5$, d_0 resolution $\sim 10 \mu m$,
- · Muon spectrometer: trigger and muon identification,
- J/ψ mass resolution ~ 60 MeV, $\Upsilon(1S)$ ~ 120 MeV.
- ATLAS trigger system: hardware Level-1 trigger and two-level software High-Level Trigger

Trigger selection for heavy flavour studies is mostly based on di-muon signature:

- muon p_T threshold (4 or 6 GeV)
- · di-muon vertex reconstruction
- · invariant mass window





Time dependent flavour-tagged ϕ_s and $\Delta\Gamma_s$ from $B_s^0 \to J/\psi \phi$

Mixing in $B_s^0 - \bar{B}_s^0$ system

- Meson mixing is a phenomenon that only occurs for the weakly-decaying, open flavor neutral K, D, and B⁰_{d,s} mesons.
- The oscillation frequency of B_s^0 meson mixing is characterized by the mass difference Δm_s of the heavy B_H and light B_L mass eigenstates; it is known with relative precisions of 0.12%.
- The heavy state B_H is expected to have a smaller decay width than that of the light state B_L . Hence, $\Delta \Gamma_s^{\rm SM} = \Gamma_L \Gamma_H = (0.087 \pm 0.021) \, {\rm ps^{-1}}$ is expected to be positive in the Standard Model.
- The non-zero decay width difference in the B_s⁰ B̄_s⁰ is well established, with a relative difference of ΔΓ_s/Γ_s = (13.5 ± 0.8)%, meaning that the heavy state B_H lives ~ 14% longer than the light state B_L.

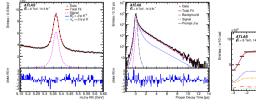
4

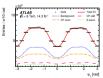
CP violation in $B_s^0 \rightarrow J/\psi \phi$ decay

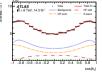
- · CP violation in the $B_s^0 o J/\psi \phi$ decay occurs due to interference between direct decays and decays with $B_s^0 \bar{B}_s^0$ mixing.
- The CP violating phase ϕ_s is defined as the weak phase difference between the $B_s^0 \bar{B}_s^0$ mixing amplitude and the $b \to c\bar{c}s$ decay amplitude.
- · In the absence of CP violation, the B_H state would correspond to the CP-odd state and the B_L to the CP-even state.
- In Standard Model the phase $\phi_s^{b \to c\bar{c}s}$ is small and can be related to Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix elements $\phi_s^{b \to c\bar{c}s} = -2\beta_s = -2\arg[-(V_{ts}V_{tb}^*)/(V_{cs}V_{cb}^*)] = -0.0370 \pm 0.0006$
- The phase $\phi_s^{b \to c\bar{c}s}$ is expected to be very sensitive to New Physics.

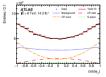
Analysis details

B-flavor tagging

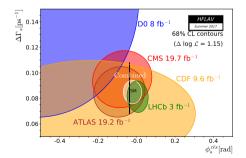

- Knowledge of B_s/\bar{B}_s flavor at production significantly increases signal PDF sensitivity to ϕ_s
- Opposite-side tagging: the initial flavour of a neutral
 B_s meson can be inferred using information from the
 opposite-side B meson that contains the other
 pair-produced b-quark in the event.
- · Three taggers: muon, electron, b-tagged jet.
- Key variable Q: charge of p_T-weighted tracks in a cone around the opposite side primary object (µ, e, b-jet), used to build per-candidates tag probability p(B|Q):
- B⁺ → J/ψK⁺ decays are used to study and calibrate OST methods.

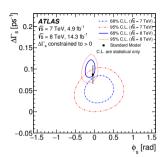

Measured variables:

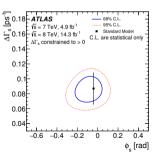

- · B. mass
- · $\textit{B}_{\textit{s}}$ proper decay time t and its uncertainty $\sigma_{\textit{t}}$
- 3 angles $\Omega = \{\theta_T, \phi_T, \psi_T\}$ to separate CP states
- · B_s momentum p_T
- B_s tag probability p(B|Q)


Signal decay main parameters:

- Δm_s is fixed to 17.77 ps $^{-1}$
- \cdot B_s mean mass
- · decay width $\Gamma_s = (\Gamma_L + \Gamma_H)/2$
- decay width difference $\Delta \Gamma_{\!\!s} = \Gamma_{\!\!L} \Gamma_{\!\!H}$ is constrained to be positive
- CP state amplitudes $|A_0(0)|^2$ and $|A_{\parallel}(0)|^2$
- \cdot strong phases δ_{\parallel} and δ_{\perp}
- · S-wave amplitude $|A_S(0)|^2$ and phase δ_S







Results of the CP violation $B_s^0 \rightarrow J/\psi \phi$

Parameter	Value	Statistical	Systematic
		uncertainty	uncertainty
$\phi_s[\text{rad}]$	-0.110	0.082	0.042
$\Delta\Gamma_s[\mathrm{ps}^{-1}]$	0.101	0.013	0.007
$\Gamma_s[\mathrm{ps}^{-1}]$	0.676	0.004	0.004
$ A_{ }(0) ^2$	0.230	0.005	0.006
$ A_0(0) ^2$	0.520	0.004	0.007
$ A_S(0) ^2$	0.097	0.008	0.022
δ_{\perp} [rad]	4.50	0.45	0.30
$\delta_{\parallel} \; [{\rm rad}]$	3.15	0.10	0.05
$\delta_{\perp} - \delta_{S}$ [rad]	-0.08	0.03	0.01

Measurement of the relative width difference $\Delta\Gamma_{\!d}/\Gamma_{\!d}$ of the $B^0-\bar B^0$ system

Relative width difference $\Delta \Gamma_d / \Gamma_d$ in $B^0 - \bar{B}^0$ system

- Standard Model prediction $\Delta\Gamma_d^{\rm SM}/\Gamma_d = (0.42 \pm 0.08) \times 10^{-2}$
- · Experimental sensitivity still below SM predictions
- Measured through relative ratio of B_d^0 to $J/\psi K_S^0$ vs $J/\psi K^*$ (892) 0

Method

The untagged timedependent decay rate $\Gamma(B_q(t) \to f)$ to a final state f:

$$\Gamma(B_q(t) \to f) \propto \mathrm{e}^{-\Gamma_q t} \left[\cosh \frac{\Delta \Gamma_q t}{2} + A_\mathrm{P} A_\mathrm{CP}^\mathrm{dir} \cos(\Delta m_q t) + A_{\Delta \Gamma} \sinh \frac{\Delta \Gamma_q t}{2} + A_\mathrm{P} A_\mathrm{CP}^\mathrm{mix} \sin(\Delta m_q t) \right]$$

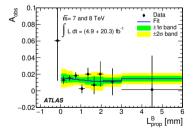
- · A_P is the particle/antiparticle production assymmetry (excess of $B^0(\bar{b}d)$ mesons over $\bar{B}^0(b\bar{d})$ mesons due to the presence of valence d quark)
- · $A_{\sf CP}^{\sf dir}, A_{\sf CP}^{\sf dir}$ and $A_{\Delta\Gamma}$ are theoretically well defined for flavour-specific final states and CP eigenstates
- CP eigenstates $J/\psi K_S^0$: $A_{\rm CP}^{\rm dir}=0$, $A_{\rm CP}^{\rm mix}=-\sin(2\beta)$, $A_{\Delta\Gamma}=\cos(2\beta)$, where $\beta=\arg(-V_{cd}V_{cb}^*/V_{td}V_{tb}^*)$
- · flavour-specific eigenstates $J/\psi K^*$ (892) 0 : $A_{\rm CP}^{\rm dir}=$ 1, $A_{\rm CP}^{\rm mix}=$ 0, $A_{\Delta\Gamma}=$ 0

Fit the ratio of CP/flavour eigenstates to determine $\Delta\Gamma_d$:

$$\frac{\Gamma[\psi K_S^0, t]}{\Gamma[\psi K^*, t]} = \frac{\cosh\frac{\Delta \Gamma_q t}{2} + \cos 2\beta \sinh\frac{\Delta \Gamma_q t}{2} - A_{\mathsf{P}} \sin(\Delta m_q t)}{\cosh\frac{\Delta \Gamma_q t}{2} + A_{\mathsf{P}} \cos(\Delta m_q t)}$$

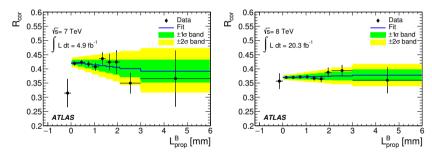
- · using the ratio eliminates the dominant factor $e^{-\Gamma_q t}$ and leads to improved precision for $\Delta \Gamma_d$
- · production assymmetry A_P can be determined from data

10


Determination of production assymmetry A_P

Production asymmetry derived from observed time-dependent asymmetry of $B_d \to J/\psi K^*$ (892) candidates (omitting CP violating mixing terms):

$$\Gamma[\underline{B/\bar{B}} \to J/\psi K^*, t] \propto \mathrm{e}^{-\Gamma_q t} \left[\cosh \frac{\Delta \Gamma_q t}{2} \pm A_{\mathrm{P}} \cos(\Delta m_q t) \right]$$


Observed charge asymmetry $A_{i, {\rm obs}}=(K^*-\bar{K}^*)/(K^*+\bar{K}^*)$ is fitted with $A_{i, {\rm exp}}=(A_{\rm det}+A_{i, {\rm osc}})(1-2W)$

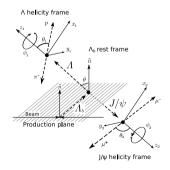
- A_{det} is detector-related asymmetry due to differences in the reconstruction of positive and negative particles;
- $W=0.12\pm0.02$ mistag fraction than the decay $K^*\to K^+\pi^-$ is identified as $\bar K^*\to K^-\pi^+$, is determined from MC;
- · $A_{i,osc} = A_{p} \cos(\Delta m_{q} t) / \cosh \frac{\Delta \Gamma_{q} t}{2}$
- $A_{\text{det}} = (1.33 \pm 0.24 \pm 0.30) \times 10^{-2}$ is consistent with MC
- $A_P = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$ is consistent with LHCb
- · First LHC measurement of production asymmetry in central region

Determination of $\Delta\Gamma_d$

- Extract ct-dependent yields for K^* and K_S decays
- · Fit ct-dependency leaving $\Delta\Gamma_d/\Gamma_d$ as the only free parameter

· Consistent result for the two datasets:

$$\Delta\Gamma_d/\Gamma_d = (0.1 \pm 1.1(\text{stat.}) \pm 0.9(\text{syst.})) \times 10^{-2}$$


• Currently, this is the most precise single measurement. It agrees with the Standard Model prediction and the measurements by other experiments.

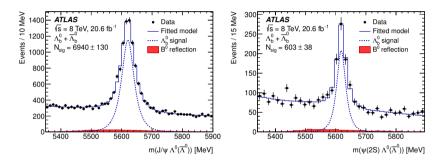
Λ_b^0 decays

Λ_b^0 polarization: exact properties

V. V. Abramov, Spin physics in high-energy hadron interactions, Phys. Atom. Nucl. 68, 385 (2005) [Yad. Fiz. 68, 414 (2005)]:

- In strong interactions, secondary particles C originating from reactions of the type A + B → C[†] + X cannot have a
 longitudinal polarization P_L. The presence of a longitudinal polarization would violate the parity-conservation law.
- For collisions of identical unpolarized particles, $P_T(-x_F) = -P_T(x_F)$, by virtue of invariance under the rotation of the coordinate system through an angle of 180° about the normal n to the reaction plane. As a consequence, we have $P_T(x_F = 0) = 0$ ($x_F = 2p_L(\Lambda_0^0)/\sqrt{s}$).

- heta is the polar decay angle of Λ^0 with respect to the normal direction \hat{n} in Λ^0_b rest frame;
- θ_1 and ϕ_1 are the polar and azimuthal angles of proton in Λ^0 rest frame with respect to the Λ^0 direction in Λ^0_h rest frame;
 - $heta_2$ and $heta_2$ are the polar and azimuthal angles of μ^+ in J/ψ rest frame with respect to the J/ψ direction in Λ_b^0 rest frame.


Helicity amplitudes of $\Lambda_b^0 \to J/\psi \Lambda^0$

 $H_{\lambda_a,\lambda_b}^{A_b^0 \to A^* \psi}$ helicity amplitudes measured by ATLAS and LHCb for $A_b^0 \to A^0 J/\psi$ with theory prediction by **T. Gutsche et al., Phys.** Rev. D 88, 114018 (2013):

Rev. D 00, 114010 (2013).								
	$\Lambda_b^0 \to \Lambda^0 J/\psi$			$\Lambda_b^0 \to \Lambda^0 \psi(2S)$				
	theory	LHCb	ATLAS	theory	experiment			
$ \widehat{H}_{+1/2,+1} ^2$	$0.31 \cdot 10^{-2}$	$-0.06\pm0.04\pm0.03$	$(0.08^{+0.13}_{-0.08} \pm 0.06)^2$	$0.12 \cdot 10^{-1}$?			
$ \widehat{H}_{+1/2,0} ^2$	$0.46 \cdot 10^{-3}$	$-0.01\pm0.04\pm0.03$	$(0.17^{+0.12}_{-0.17} \pm 0.09)^2$	$0.32 \cdot 10^{-2}$?			
$ \widehat{H}_{-1/2,0} ^2$	0.53	$0.58 \pm 0.06 \pm 0.03$	$(0.59^{+0.06}_{-0.07} \pm 0.03)^2$	0.45	?			
$ \widehat{H}_{-1/2,-1} ^2$	0.47	$0.49 \pm 0.05 \pm 0.02$	$(0.79^{+0.04}_{-0.05} \pm 0.02)^2$	0.54	?			
α_b	-0.07	$0.04 \pm 0.17 \pm 0.07$	$0.30 \pm 0.16 \pm 0.06$	0.09	?			

- $\cdot \ \alpha_b = |\widehat{H}_{+1/2,0}|^2 |\widehat{H}_{-1/2,0}|^2 + \widehat{H}_{-1/2,-1}|^2 |\widehat{H}_{+1/2,+1}|^2$
- $\widehat{W}(\cos\theta) = \frac{1}{2} (1 + P\alpha_b \cos\theta)$

Observation of $\Lambda_b^0 \to \psi(2S)\Lambda^0$

- $\cdot \quad \Gamma(\Lambda_b^0 \to \psi(2S)\Lambda^0)/\Gamma(\Lambda_b^0 \to J/\psi\Lambda^0) = 0.501 \pm 0.033(\mathrm{stat}) \pm 0.019(\mathrm{syst})$
- $\cdot~$ The only available theoretical expectation for the branching ratio is 0.8 $\pm\,$ 0.1 exceeds the measured value

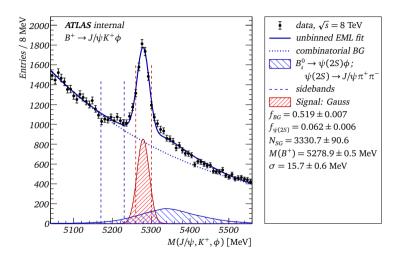
Search for tetraquark states $X(4140,...) \rightarrow J/\psi \phi$

Search for tetraquark states $X(4140,...) \rightarrow J/\psi \phi$

- CDF 2008: first evidence for a narrow near-threshold $X(4140) \rightarrow J/\psi \phi$ mass peak in $B^+ \rightarrow J/\psi \phi K^+$ decay;
- X(4140) does not fit conventional expectations for a charmonium state; it is well above the threshold for open charm decays, so a $c\bar{c}$ charmonium meson with this mass would be expected to decay into an open charm pair dominantly and to have a tiny branching fraction into $J/\psi \phi$;
- X(4140) structure could be a molecular state, a tetraquark state, a hybrid state or a rescattering effect;

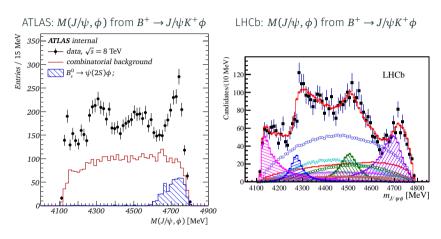
•
$$B^+ \rightarrow J/\psi K^+ \phi$$

- · large signal yield
- · lack of particle identification, large backround from pions
- peaking background from $B_s^0 \to \psi(2S)\phi \to J/\psi \pi^+\pi^-\phi$

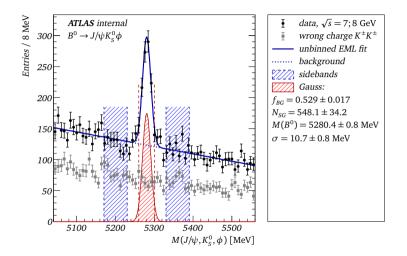

$$\cdot B^0 \rightarrow J/\psi K_S^0 \phi$$

- · moderate signal yield
- K_S^0 identified like V^0 decay, contamination from Λ^0 is negligible
- 41 ± 7 candidates from BaBar: Phys. Rev. D 91, no. 1, 012003 (2015)

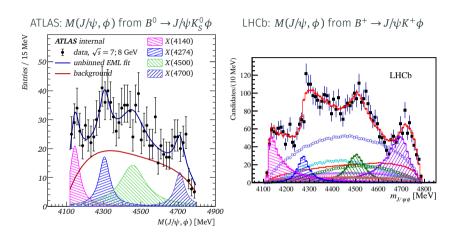
$\cdot \Lambda_b^0 \to J/\psi \Lambda^0 \phi$


- · small signal yield
- possible contamination from K_s^0 can be suppressed
- · this decay channel has not yet been observed
- · hidden charm pentaquark state with strangeness S=-1 in $(J/\psi,\Lambda^0)$ system

ATLAS: $B^+ \rightarrow J/\psi K^+ \phi$


- · selection criteria are very preliminary
- BG contamination from $B_{\varepsilon}^0 \to \psi(2S)\phi \to J/\psi \pi^+\pi^-\phi$ is moderate

ATLAS: $(J/\psi, \phi)$ mass spectrum from $B^+ \to J/\psi K^+ \phi$


- peaks from X(4274) and X(4500) are clearly seen
- · X(4140) is near threshold, accurate amplitude analysis is needed to determine its natural width
- \cdot the contamination from B_s^0 is large at high mass; the measurement of X(4700) state is not starightforward

ATLAS: $B^0 \rightarrow J/\psi K_S^0 \phi$

- · no peaking background
- · small statistics at RunI

ATLAS: $(J/\psi, \phi)$ mass spectrum from $B^0 \to J/\psi K_S^0 \phi$

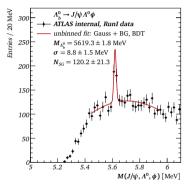
- same structure in (J/ ψ , ϕ) mass spectrum as in $B^+ \to J/\psi K^+ \phi$ decay chain
- toy fit model, no interference between \boldsymbol{X} states

ATLAS: $\Lambda_b^0 \rightarrow J/\psi \Lambda^0 \phi$

variables:

·
$$\chi^2(\Lambda_h^0)$$
, $\chi^2(J/\psi + \Lambda^0)$

·
$$p_T(\Lambda^0)$$
, $p_T(K^+)$, $p_T(K^-)$


·
$$p_T(\Lambda_b^0)/p_T^{\text{vtx}}$$

proper decay time ct

· strong evidence for signal

· this decay chain has not yet been observed by any experiment

ATLAS RunI data, TMWA BDT

Summary

- ATLAS has produced impressive and competitive results in beauty and charm physics:
- CP violation induced by $B_s^0 \bar{B}_s^0$ mixing in $b \to c\bar{c}s$ transitions has not yet been observed either, with an uncertainty on the $\phi_s^{b \to c\bar{c}s}$ phase of 31 mrad;
- · Most precise single-experiment measurement for $\Delta\Gamma_d/\Gamma_d$
- · All results discussed are statistics-limited: very encouraging perspectives with Run 2
- · More public results can be found on ATLAS B-physics TWiki page