

Room-Temperature Magnet of HIAF

Lizhen Ma

Magnet and Mechanical Technique Group, IMP, CAS

July 2, 2018

Outline

- BRing Normal Magnets
- BRing Special Magnets
- SRing Normal Magnets
- ➢ Summary

Outline

► General Introduction **BRing Normal Magnets BRing Special Elements** SRing Normal Magnets **≻**Summary

The Layout of HIAF Magnet

The preliminary design report (2017.10)

No.	Location	Quantity
1	i-Linac	51
2	BRing	273
3	SRing	127
4	Beam Lines	120
5	HFRS	92
	Total	663

SC magnets are used at iLinac and HFRS of HIAF. RT magnets are mainly used at BRing and SRing of HIAF.

Main Requirements of BRing

— Maximum beam rigidity: 34 T.m, large aperture

— Maximum ramping rate of dipole: 12.0 T/s, 5 Hz

— Total number of magnets is 273

Normal magnets			Special elements		
Item	Quantity	Magnetic field	Item	Quantity	B _{max} /E _{max}
Dipole	48	0.047-1.58 T	ES	1+2	-160 kV
Quadrupole	78	9.12 T/m	Septum	2+3	1.4 T
Sextupole	54	68 T/m ²	Bump	8+3	1 kGauss
Corrector	72	1000 Gauss	Kicker	2 (9 cells)	500 Gauss

BRing RT magnets Vs. BRing SC magnets

	RT magnets	SC magnets		
Cost	¥130 Millions	magnet + cryogenic, $\frac{1}{200}$ Millions		
Operating cost	Expensive ($P_{DC} \approx 9$ MW) Running time >5000h 40 Million Y /year	Half of RT		
Technology	Relatively mature	Fast ramping rate of 12T/s ,5 Hz is too risk for IMP		
Time period	2-3 years	include the development of prototype; 4-5 years		
Manpower	Fewer (4 persons)	More(6-7 persons)		
Considering the risk, the budget and the cost, RT magnets would be used in BRing.				

But the SC prototype also would be a very important task in next 2 years.

Main Requirements of SRing

— Maximum beam rigidity: 15 Tm

— Maximum ramping rate of dipole: 0.3 T/s

— Total number of magnets is **127**

Normal magnets		Special elements			
Magnet	Quantity	Magnetic field	Magnet	Quantity	B _{max}
Dipole	20	0.16-1.6 T	Septum	2	1.31 T
Quadrupole	44	7.7 T/m	Kicker	1(5cells)	570 Gauss
Sextupole	20	30 T/m ²			
Corrector	40	200 Gauss			

SRing RT magnets Vs. SRing SC magnets

	RT magnets	SC magnets
Cost	Cheap	Expensive (magnet + cryogenic) + 20 million ¥
Operating cost	Expensive Running time <1000 h	Cheap
Technology	Relatively mature	Many experiment instrument need to insert into the dipole and make the magnet too complicated, so, the SC type is unfit.
Time period	Short	Long (include the development of SC prototype)
Manpower	Fewer	More

RT magnets would be used in SRing.

Outline

➤General Introduction

BRing Normal Magnets

BRing Special Elements

SRing Normal Magnets

≻Summary

Physical Requirements (Prototype Dipole Magnet)

Parameters	D1	D2	
Number required	24	24	
Magnet type	Rectar	ngular	
Radius of magnet (m)	21	.5	
Bending angle (deg)	7.	5	
Pole face angle (deg)	3.7	75	
Magnetic field (T)	0.047~1.58		
Magnetic rigidity $(T \cdot m)$	34	4	
Good field region H(mm)×V(mm)	132×95	180×72	
Full aperture (mm)	104		
Ramping rate (T/s)	12		
Integrated field uniformity △(BL)/(BL)	≤±32	×10 ⁻⁴	

- **Room temperature**
- Straight shape structure
- H-type frame
- Four dipoles in series to one power-supply.
- fast ramping
- large range of magnetic field.

OPERA Simulation Model (Dipole Magnet)

2D model

2D model—

- Air trim slot;
- Adjust pole size;
- Saturation;
- Transverse field homogeneity

Design Parameters (Dipole Magnet)

	Electrical p	oarameters	
Dimension of hollow conductor (mm)	30×30/Φ12	Magnet voltage (V)	27
Number of coil turn per pole	4×4	Maximum Joule loss (kW)	125
Magnet current(A)	4600	Inductance (mH)	21.5
Resistance(mΩ)(60°C)	5.9	Max. inductive voltage (V)	1000
	Cooling pa	arameters	
Water pressure (kg/cm²)5Temperature rise (°C)24			24
Volume flow (L/s)	1.23	Flow velocity (m/s)	2.72
	Mechanical	parameters	
Longitudinal envelopes (mm)	3164	Horizontal envelopes (mm)	1600
Vertical envelopes(mm)	1120	Weight of magnet (ton)	32

Transverse Field Homogeneity (Dipole Magnet)

2D calculated transverse field homogeneity($\leq \pm 1 \times 10^{-4}$)

3D calculated transverse field homogeneity($\leq \pm 1 \times 10^{-4}$)

Integrated Field Homogeneity (Dipole Magnet)

The integrated field homogeneity at good field region is less than $\pm 3 \times 10^{-4}$ at 1.58T.

Integrated Field Homogeneity (Dipole Magnet)

Integrated field homogeneity at 0.8 T

Integrated field homogeneity at 0.047 T

The integrated field homogeneity at good field region is less than \pm 3 \times 10⁻⁴ at 0.8T and 0.047T.

Mechanical Structure (Dipole Magnet)

Cross-section of BRing dipole

Structure of BRing dipole

Two air trim slots would be used to improve the magnetic field homogeneity

• Eddy Current Losses of Coil (Dipole Magnet)

The distribution of eddy current of coil

Eddy Current Losses of End Plate and Weld Plate (Dipole Magnet)

Eddy current losses of end plate and weld plate

Eddy current distribution of end plate and weld plate

 The eddy current losses of end plate and weld plate increase obviously when the yoke is saturated.
 The end plate use stainless steel can reduce the eddy current.

3. The slot and the ladder-like structure of end plate can reduce the eddy current.

The structure of end plate

• Support and Displacement of Coils (Dipole Magnet)

- The maximum deformation in the X-direction occurs at two adjacent support points and in the middle of the support points and corners.
- Enough supports must be placed along every side of coils (such as five pairs along long side and one pair along short side).

Parameters of BRing Quadrupole

Parameters	Q1	Q2	Q3		
Number Required	38	39	1		
Effective length (m)	0.8	1.0	1.2		
Good field region $H(mm) \times V(mm)$	120×107	207×61	139×195		
Full aperture diameter (mm)	180	180	260		
Max. quadrupole gradient (T/m)	9.12	7.52	6.1		
Electrical parameters					
Dimension of hollow conductor (mm)	20×20/Ф8	$20 imes 20/\Phi 8$	22×22/Ф8		
Number of coil turn per pole	16	16	20		
Magnet current(A)	2000	1650	2200		
Resistance(60°C)(m Ω)	9.5	11	13.4		
Magnet voltage (V)	19	18.15	29.5		
Joule loss (kW)	38	30	65		
Inductance (mH)	12.0	15.0	24.0		

Simulation Results of Quadrupole(Q1)

3D model

3D gradient field uniformity $(\pm 1 \times 10^{-4})$

Simulation Results of Quadrupole(Q1)

Integrated field homogeneity $(\pm 1 \times 10^{-4})$

End chamfer

- $F_{coil}/m \approx 7500$ N/m, coil fixation need to be consider carefully.
- In addition, the eddy current of magnet need to be done.

Structure of Q1

Outline

➢ General Introduction **BRing Normal Magnets** BRing Special Elements SRing Normal Magnets ➤Summary

BRing Special Elements

Bump Magnet (Very similar to that of our CSR)

	-				
	Injection	bump	Extraction bump	220	1
	Horizontal	Vertical			25
Quantity	4	4	4		
Effective length (mm)	300	300	600/1400 400/1000		
Magnetic field (Gs)	527/149 549/83	571/153 434/179	515/944 131/941	Injection hump	Future etile a la une a
Rise time (ms)	≤1.5	≤1.5	~1	The ferrite core is used	Extraction bump
Top time (ms)	0.05~2	0.05~2	1000~10000	 ✓ The ferrice core is used for rapid down time ➤ One turn coil is used 	 > 0.15~0.35 mm stainles steel is used for yoke > Water-cooling coil is
Down time (ms)	0.3~3	0.3~3	<500	to reduce the inductance ≻Ceramic chamber	used for top time ≻Ceramic chamber
Frequency (Hz)	≥20	≥20			

BRing Special Elements

Kicker magnet (Very similar to that of our CSR)

Parameters	Values
Quantity	2
Modules	4/5
Effective length (mm)	600
Total length (mm)	3000/3750
Bending angle (mrad)	3.53/4.40
Magnetic field (Gs)	500
Rise time (ns)	<850
Top time (ns)	≥1600
Good field region	[-70,70]×[-50,50]
$(mm \times mm)$	[-76,76]×[-35,35]

Kicker modules

- Integral field homogeneity
- \succ The ferrite core is used for fast rise time. \triangleright One turn coil is used to reduce the inductance
- > The modules are located in vacuum chamber

Outline

General Introduction **BRing Normal Magnets BRing Special Elements** SRing Normal Magnets Summary

Physical Requirements (Dipole Magnet)

		_
Parameters	D	
Number Required	20	
Effective length(m)	2.945	
Radius of magnet (m)	9.375	
Bending angle (deg)	18	•
Pole face angle (deg)	9	•
Magnetic Field (T)	0.016~1.6	•
Magnetic rigidity (T·m)	15	
Good field region H(mm)×V(mm)	318×88	
Full Aperture (mm)	108	
Ramping Rate (T/s)	0.3	
Integrated field uniformity △(BL)/(BL)	$\leq \pm 3 \times 10^{-4}$	

- Room temperature;
- H-type frame;
- Many slot or hole on yoke;

OPERA Simulation Model (Dipole Magnet)

Mechanical Structure (Dipole Magnet)

Cross-section of SRing dipole

- Air trim slot;
- Adjust pole size;
- Removable pole;
- End chamfer;

Design Parameters (Dipole Magnet)

Electrical parameters				
Dimension of hollow conductor (mm)	20×20/Φ10	Magnet voltage (V)	75	
Number of coil turn per pole	6×8	Joule loss (kW)	115	
Magnet current(A)	1555	Inductance (mH)	225	
Resistance(mΩ)(60°C)	48			
	Cooling p	arameters		
Water pressure (kg/cm ²)	5	Temperature rise (°C)	23	
Volume flow (L/s)	1.2	Flow velocity (m/s)	1.9	
	Mechanical	parameters		
Longitudinal envelopes (mm)	3212	Horizontal envelopes (mm)	1860	
Vertical envelopes(mm)	1420	Weight of magnet (ton)	54.5	

Outline

► General Introduction **BRing Normal Magnets BRing Special Elements** SRing Normal Magnets **≻**Summary

Summary

- HIAF project has about 530 Room-Temperature magnets at BRing and SRing, we have relative mature technology and enough experience for them.
- For BRing magnet, 12T/s and 5Hz ramping would affect the quality of magnetic field and stability. The structure need to be designed carefully. And a prototype is being fabricated now.
- Construction period of HIAF project is seven years, all magnets would be finished in five years!

Thanks for your

