

Introduction of the superconducting magnets for HIAF project

Wu Wei

Magnet & Mechanical technique group

July. 2, 2018 Dubna

Institute of Modern Physics , Chinese Academy of Sciences

wuwei@impcas.ac.cn

Overview of the SC magnets in HIAF project

Superconducting solenoids for iLinac

Superconducting multiplets for HFRS

Superconducting dipoles for HFRS

Design study for BRing RCS superconducting dipole

SC magnets in HIAF project

Overview of the SC magnets in HIAF project

Superconducting solenoids for iLinac

Superconducting multiplets for HFRS

Superconducting dipoles for HFRS

Design study for BRing RCS superconducting dipole

iLinac SC solenoid - Specifications

Specifications of L200 solenoid

Item	Unit	Value
Operation temperature	K	2/4.5
Cold bore	mm	40
Length	mm	340
Stray field (z≥260mm)	Т	≤ 0.02
$\int B_z^2 dz$	T ² m	9.8
$\int B_z^2 dz$ homogeneity (Φ30 mm)	%	5%
Deviation of field center from mechanical center at magnet ends	mm	< 0.3

Specifications of L400 solenoid

Item	Unit	Value
Operation temperature	K	2/4.5
Cold bore	mm	40
Length	mm	470
Stray field (z ≥ 260mm)	Т	≤ 0.02
$\int B_z^2 dz$	T ² m	16.9
$\int B_z^2 dz$ homogeneity (Φ30 mm)	%	5%
Deviation of field center from mechanical center at magnet ends	mm	< 0.3

iLinac SC solenoid - Conceptual design

Leff = 250 mm

Leff = 400 mm

iLinac SC solenoid – experiences

- 26 SC solenoids for ADS injector II;
- Design and measurement of solenoids for FRIB;

Solenoids for FRIB

Solenoids for ADS

Measurement of magnetic center

Outline

Overview of the SC magnets in HIAF project

Superconducting solenoids for ILinac

Superconducting multiplets for HFRS

Superconducting dipoles for HFRS

Design study for BRing RCS superconducting dipole

Introduction of HFRS

- Production, separation and identification of exotic nuclei
- Primary and secondary beams
- > High magnetic rigidity: 25 Tm
- > Big beam acceptance: $\pm 160 \text{ mm}$

Specifications of quadrupoles

 Large bore; Pole-tip fields: 2.4T; Low current: < 600 A; 		Grad	ient		T/m	11.43		
		Effective length		m	0.8(Q1), 1.1(Q2), 1.5(Q3)			
 Liquid Helium 	bath cooling;	Horiz	ontal	aperture	mm	\pm 160r	nm	
		Vertio	cal ga	o	mm	\pm 85		
Q1+S1+O1 Q2+S2+	-O2 Q3+S3+O3+CV	Field	Quali	ty Specificatio	ons of	±8⋅10 sextup	-4 Doles	
		Grad	ient		T/m ²	30		
1100 1000 1500 000 1500		Effective length			m	0.8(S1), 1.1(S2), 1.5(S3)		
		Horizontal aperture		mm	\pm 160 mm			
A typica	l triplets	Vertical gap		mm	\pm 85 mm			
	Sp	Field becific	Quali ations	ty of <mark>Octupo</mark> l	es	\pm 5×1	0 ⁻³	
	Gradient		T/m ³	105				
Effective length Horizontal apertur Vertical gap			m	0.8(O1), 1.1(O2), 1.5(Q3) ±160 mm		.5(Q3)		
		ire	mm					
			mm	\pm 85 mm				
			$+5 \times 10^{-3}$				10	

Application status

- The iron dominated magnets with superconducting coils have been widely used:
 - Easier to fabricate and wind;
 - low request for coils installation precision;
 - Easier to do quench protection.
- Coil dominated magnet was some times requested:
 - Small cold mass (speed up cool down or minimize radiation heat load);
 - No saturation effect;

Iron-dominated option

MSU/NSCL A1900 Triplet RIKEN Big-RIPS Triplet GSI/FAIR Super-FRS Multiplet
Cold iron design is the most popular choice from A1900(1990s)

A. F. Zeller, Advances in Cryogenic Engineering(1998) H.Muller, Proceedings of IPAC2013

K. Kusaka, IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2004

Iron-dominated design for HFRS Quadrupole (1 meter)

Field Harmonics components

Harmonics	value	
n2	1	
n6	8.8×10 ⁻⁴	zł
n10	0.7×10 ⁻⁴	
n14	1.8×10 ⁻⁴	

3D model

2D model

Field gradient homogeneity~0.03%

Cross section of coils	50mm×48mm
J _e	106 A/mm
Dia of Iron	1,240 mm
Weight of Iron	7.8 ton

- Hard to achieve good field quality at both low and high field ;
- End chamfer needs to be further optimized

Iron-dominated design for HFRS Sextupole

2D model

3D model

Easy to reach the field quality;
Weight of the cold iron is 2.14 ton.

Problems in the iron-dominated design for HFRS

- Large cold mass. Heaviest cold mass of one
 - module is about 40 tons. It will need long time to
 - cool down and warm up;
- Triplets, sextupole and steering dipole integrated into modular cryostats. The longest magnet
 - column is about 7 m. Difficult for cold mass
 - support and alignment.
- Large helium containment will cause big pressure

rise after a quench;

Coil-dominated option

Air-core type triplet for BigRIPS (Simple racetrack coil)

Proposals for S³ of SPIRAL2 (Walstrom type coil was taken, fabricated by AML)

S. Manikonda,17Feb, 2016

- Advantages of light weight and good field linearity;
- Magnetic field are more **sensitive** to positioning error;
- Difficult to fabricate and wind, especially Walstrom type coil.

Why CCT (Canted-Cosine-Theta)?

- First suggested by D.I. Meyer and R. Flasck in 1970
- AML, LBNL & CERN have started the R&D
- Compared with conventional cosine-theta coil, it is an almost perfect approximation of a cosine-theta magnet, thus yields very good field distribution(especially for integral field)
- The combined function coil can be easily achieved
- Avoid tight bends for the ends of the coils
- Less sensitive to positional (but need more conductor)

$$X(\theta) = \frac{h}{2\pi}\theta + \sum_{n} A_n \sin(n\theta + \varphi_n)$$
$$Y(\theta) = R * \cos(\theta)$$
$$Z(\theta) = R * \sin(\theta)$$

Coil design (quadrupole)

	Q1(L=0.8	Q2(L=1.1	Q3(1.5m)
	m)	m)	
Gradient Field (T/m)	11.43	11.43	11.43
Current(A)	500	500	500
Layers	5+5	5+5	5+5
CCT angle	36	36	36
Turns per layer	110	150	204
Pitch(mm)	7.4	7.4	7.4
Aperture(mm)	320×170	320 × 170	320 × 170
Wire Diameter (mm)	0.85	0.85	0.85
	0.99 ± 0.01	0.99 ± 0.01	0.99 ± 0.01
Bpeak(T)	2.9	2.9	2.9
Current margin	38%	38%	38%
Conductor length(km)	6.3	8.6	11.7
OD of mandrel(m)	420 mm	420 mm	420 mm
Coil groove size	2 mm x 5	2 mm x 5	2 mm x 5
	mm	mm	mm

18

HFRS Multipoles based on nested CCT

Coil design

CCT quadrupole EM model

Integral field distribution of the quadrupole

CCT sextupole EM model

Integral field distribution of the sextupole

 □ Quadrupole and sextupole based on Canted Cosine-Theta (CCT) coil;
 □ Sextupole, octupole and steering dipole nested to reduce the length;
 □ Weight of cold mass greatly decreased (40 ton → 4 ton)

Coil configuration of singlet

A typical configuration of HFRS triplets

Fabrication techniques of complicate 3D coil

(I) Direct placement with adhesive

BNL direct winding technology

For complicate Walstrom type coil, special winding machine and techniques are needed, such as BNL's direct winding technology;

O Complex winding machine.

Walstrom type coil

Figure 2 – Thermally embedded wire (a) conceptual depiction of embedding process and (b) in actual example in a 3D printed substrate (fractal antenna)

Thermally embedded wire process (3D printing coil)

Fabrication techniques of complicate 3D coil

(II) Conductor/Cable placement in grooves

Conductor in grooves (Metal)

Round mini cable in grooves (Composite)

Rutherford cable in grooves (Metal)

• Cable:

R.B.Meinke, MAGNETICS 2010

S. Caspi, IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 25, NO. 3, JUNE 2015

- High current
- less layers and mandrels
- Easy to fabricate mandrels, wind and assembly
- Conductor:
 - Low current
 - more layers and mandrels
 - Difficult to fabricate mandrels, wind and assembly

Fabrication techniques of complicate 3D coil

(III) Coil placement in grooves

Wiring diagram

- Wind several turns of conductor into one big grooves;
- Remain low operation current while reduce the number of mandrels;
- Need more splices between coils of two mandrels.

D2 CCT Corrector for High Luminosity LHC

G. A. Kirby et al., "Hi-Lumi LHC Twin-Aperture Orbit Correctors Magnet System Optimisation," in IEEE Transactions on Applied Superconductivity, vol. 27, no. 4, pp. 1-5, June 2017.

Subscale prototype - design

24

The CCT quadrupole magnet assembly

Cross section of the CCT quadrupole coil

Main Design Parameters of Quadrupole Magnet

Parameter	Value	Unit	
Gradient	40	T/m	
Effective length	160	mm	
Operation current	400	А	
Winding pitch	6	mm	
Tilt angle	45	deg	
Inductance	10	mH	
Aperture	60	mm	
Good field	\pm 20	mm	
Uniformity	± 4E-4		

Parameters of the NbTi/Cu strand

Wire type	Monolith
Insulation	Formvar
Bare size	0.72 mm
Insulated size	0.77 mm
Outer Insulated with Nylon	0.9 ± 0.005
braid	mm
Cu/SC	1.3:1
RRR (293 K/10 K)	>100
Ic (6 T,4.2 K)	442.7 A

Subscale prototype - fabrication

Former Fabrication

Coil Winding and Impregnation

Subscale prototype - cryogenic test

Magnet Test

Assembly Sequence of singlet

Reference Shaft

Assembly Sequence of singlet

Assembly Sequence of singlet

Mechanical design of a triplet

Cross section of the nested multipole coils

Cryostat design

Outline

Overview of the SC magnets in HIAF project

Superconducting solenoids for ILinac

Superconducting multiplets for HFRS

Superconducting dipoles for HFRS

Design study for BRing RCS superconducting dipole

SC dipoles for HFRS – Superferric design

Opera model

Effective length	2.74 m
Gap	160 mm
Central field	1.6 T
Operation current	300 A
Inductance	15 H
Weight of Iron	50 t
Cooling method	LHe bath cooling
Operation temperature	4.2 K

Super-FRS dipole prototype

Superferric design of HFRS dipole

SC dipoles for HFRS – CCT design

Central Field (T)	1.6
Current(A)	500
Layers	2 (5+5)
CCT angle	36 °
Turns per layer	1030
Pitch(mm)	2.7
Aperture(mm)	320×140
Wire Diameter (mm)	0.85 0.99±0.01
Insulation meterial	Kapton
Cu/SC	2.0
Bpeak(T)	2.5
SSL	64%
Conductor length(km)	23.5
ID of mandrel(mm)	420
Coil groove size	2 mm x 5 mm

SC dipoles for HFRS – CCT design

Mechanical design of the Cold mass

HTS Radiation Resistant Magnets for HFRS

EM Design (20K pole & 60K yoke)

Testing (LN2)

E

Outline

Overview of the SC magnets in HIAF project

Superconducting solenoids for ILinac

Superconducting multiplets for HFRS

Superconducting dipoles for HFRS

Design study for BRing RCS superconducting dipole

SC dipole for BRing

Baseline: resistive magnets;

- SC magnets: lower energy consumption, large cryogenic pump;
- Nuclotron type cable, helium force flow cooling;
- Superferric, window frame cold iron yoke, single layer to simplify fabrication, coil is supported by GFRP.

Parameter	Value
Number of magnets	48
Maximum field (T)	2
Minimum field (T)	0.04
Bend radius (m)	17
Good field region (mm×mm)	162×94
Field quality	\pm 1 $ imes$ 10 ⁻⁴
Effective magnetic length (m)	2.225
Maximum ramp rate (T/s)	10

- Cu-Ni pipe: inner dia 6 mm with thickness 0.5 mm
- NbTi superconducting wire: diameter 0.8 mm
- 33 strands in cable
- One layer 14 turns saddle coil
- Operating temperature: 4.7 K
- Loadline margin: 20%

- Emag=101.5 kJ
- Emag of the whole ring ~ 5 MJ (SIS100 ~ 4.5 MJ)
- Iop=17kA
- L = 0.774 mH
- U(@10T/s) = 62 V

Length specific coil losses for Luvata OK2500 cable

Luvata OK25000@OD7mm tube								
Ramp	0 to 1 T	@ 10 T/s	1 T to 2 T in @ 1T/s		2T to 0 T		Cycle average	
					@ 1.	.6 T/s	over	3.7s
Per	Power	Energy	Power	Energy	Power	Energy	Power	Energy
Length	[W/m]	[J/m]	[W/m]	[J/m]	[W/m]	[J/m]	[W/m]	[J/m]
Hysteresis	0.405	0.040	0.018	0.018	0.059	0.074	0.036	0.132
Coupling	0.682	0.068	0.007	0.007	0.022	0.027	0.042	0.102
Total	1.086	0.109	0.025	0.025	0.081	0.101	0.077	0.235

Total losses for 14 turns coil length (without bus bars) of 67.2 m

- Channel diameter: 6 mm for an OD 7mm tube
- Channel length: 67 m coil + 40 m bus bar = 107 m
- Critical helium

Reference cable	Luvata OK25000 @ OD7mm tube
Average heat load Q	15.8 J
Channel diameter ID	6 mm
Inlet pressure p ₀ [bar]	1.50 bar
Inlet temperature T ₀	4.68 K
Pressure drop Δ p	0.17 bar
Mass flow d <i>m</i> /d <i>t</i>	3.5 g/s
Hom. flow velocity in u 0	1.1 m/s
Outlet pressure p out	1.33 bar
Outlet temperature Tout	4.53 K
Steam quality outlet x out	0.31
Void fraction outlet ϵ_{out}	0.70
Hom. flow velocity out u out	2.4 m/s

3D EM model of the BRing dipole SC alternative

Nuclotron type cable developed in IMP

CCT dipole based on Nuclotron cable

Thanks a lot for your attention!