

Progress of Baryonic Matter at Nuclotron

M.Kapishin

for BM@N Collaboration

Complex NICA

Parameters of Nuclotron for BM@N experiment: E_{beam} = 1-6 GeV/u; *beams: from* p to Au; Intensity~10⁷ c⁻¹ (Au)

- Central tracker inside analyzing magnet \rightarrow 6 GEM detectors 163 x 45 cm² and forward Si strip detectors for tracking
- ToF system, trigger detectors, hadron and EM calorimeters, outer tracker Program:
- Measure inelastic reactions Ar (Kr) + target \rightarrow X on targets Al, Cu, Sn, Pb
- \rightarrow Hyperon production measured in central tracker (Si + GEM)
- \rightarrow Charged particles and nuclear fragments identified with ToF
- \rightarrow Gamma and multi-gamma states identified in ECAL
- \rightarrow 130 M events in Ar beam, 50 M events in Kr beam
 - + SRC program in Carbon beam with Liq H₂ target (talk of E.Piasetzky)

+ analyze data from previous technical runs with Deuteron and Carbon beams of 3.5 - 4.6 GeV/n M.Kapishin BM@N experiment

BM@N beam profile

M.Kapishin

BM@N experiment

Beam structure & pile-up suppression

10

10

ref004686 Triggers BC1_1 Time

M.Kapishin

BM@N experiment

High threshold in BC

BM@N set-up in Ar, Kr run, March 2018

CSC chamber

ToF-400 installation

BM@N experiment

New detector components: 6 big GEMs, trigger detectors, 3 Si detectors, CSC chamber, full set of ToF detectors

M.Kapishin

BM@N setup behind magnet, 2018

GEM detectors for central BM@N tracker

Tests of GEM detector 163 x 45 cm²

GEM group

M.Kapishin

BM@N experiment

• 7 detectors of 163 x 45 cm² are produced at CERN workshop

Forward silicon strip detectors

Central tracker in Ar / Kr runs

M.Kapishin

Kr beam fragments in Si Vertex detector

 2-coordinate Si detector with strip pitch of 95/103 µm, full size of 25 x 25 cm²

- Detector combined from 4 sub-detectors arranged around beam
- + 2 smaller vertex detectors \rightarrow March 2018

Alignment of GEM detectors in Ar / Kr runs

Track reconstruction + Milipede: P.Batyk, S.Merz

New Cathode Strip Chamber as Outer tracker

C, Ar and Kr runs in March 2018: CSC chamber installed in front of ToF-400 to check its performance V.Palic

A.Vishnevsky + GEM team V.Palichik and analysis team

60

40

80

XYspatial

Entries 435916

100

M.Kapishin

ECAL group

- ECAL collected data in short runs in position close to C, Ar and Kr beams
- Calibration is being performed: response to Z=1, 2 particles in modules close to beam + response to cosmic particles
- \rightarrow Aim to reconstruct states decaying to γ

ToF-400 and ToF-700 based on mRPC

Λ in deuteron and carbon beams

To improve vertex and momentum resolution and reduce background under Λ :

- Need few planes of forward Silicon detectors \rightarrow 3 planes used in last run
- Need more GEM planes to improve track momentum reconstruction Methodical Paper published in PEPAN Letters, v.15, p.136, 2018(2): First results from BM@N technical run with deuteron beam 15

Beam parameters and setup at different stages of BM@N experiment

Year	2016	2017 spring	2018 spring	2020	2021 and later
Beam	d(↑)	С	Ar,Kr, C(SRC)	Au	Au,p
Max.inten sity per spill	0.5M	0.5M	0.5M	1M	5M
Trigger rate, Hz	5k	5k	10k	10k	20k→50k
Central tracker status	6 GEM half planes	6 GEM half planes	6 GEM half planes + 3 small Si planes	7 GEM full planes + small + large Si planes	7 GEM ful planes + small + large Si planes
Experiment al status	technical run	technical run	technical run+physics	stage1 physics	stage2 physics

- BM@N technical runs performed with deuteron and carbon beams at energies
 T₀ = 3.5 4.6 AGeV and recently with Ar beam of 3.2 AGeV and Kr beam of 2.4 AGeV
- Measurement of Short Range Correlations performed with inverse kinematics: C beam + H₂ target
- Major sub-systems are operational, but are still in limited configurations
- Algorithms for event reconstruction and analysis are being developed, signals of Λ hyperon decays are reconstructed
- First meeting of BM@N / MPD experiments held in April to form Collaborations
- Major BM@N plans for Au+Au to start in 2020:
- Collaborate with CBM to produce and install large aperture STS silicon detectors in front of GEM setup
- Extend GEM central tracker and CSC outer tracker to full configuration
- Implement vacuum / helium beam pipe through BM@N setup

Thank you for attention!

M.Kapishin

Backup slides

M.Kapishin

Nuclotron and BM@N beam line

Nuclotron beams for BM@N experiment: kin. energy of 1 - 4.5 AGeV, intensity few 10⁶ per spill for Z/A~0.4, beams from proton to Au

Need upgrade of Nuclotron magnet power system and BM@N beam line:

- \rightarrow extend power of ring, septum, transport magnets to accelerate and transport ions of Z/A~0.4 (Kr, Xe, Au) with energy of 4.5 AGeV, increase beam spill up to 10 sec
- \rightarrow replace air intervals / foils with vacuum beam pipe along 160 m of BM@N transport line to get minimum dead material
- \rightarrow implement non-destructive beam position monitoring on movable vacuum inserts
- → implement instruments to limit beam size and spread at BM@N target (collimators ?)
- \rightarrow implement vacuum or helium beam pipe inside BM@N from target to end

BM@N setup

BM@N advantage: large aperture magnet (~1 m gap between poles)

 \rightarrow fill aperture with coordinate detectors which sustain high multiplicities of particles

 \rightarrow divide detectors for particle identification to "near to magnet" and "far from magnet" to measure particles with low as well as high momentum (p > 1-2 GeV/c)

 \rightarrow fill distance between magnet and "far" detectors with coordinate detectors

M.Kapishin

BM@N experiment

• Central tracker (Si + GEM) inside analyzing magnet to reconstruct AA interactions

- Outer tracker (CSC, DCH) behind magnet to link central tracks to ToF detectors
- ToF system based on mRPC and T0 detectors to identify hadrons and light nucleus
- ZDC calorimeter to measure centrality of AA collisions and form trigger
- Detectors to form T0, L1 centrality trigger and beam monitors
- Electromagnetic calorimeter for γ,e+e-

GEM tracker: acceptance / momentum resolution / detection efficiency

Momentum resolution / detection efficiency

A proposal for BM@N experiment

to study SRC with hard inverse kinematic reactions

JINR (Dubna): BM@N **Israel:** Tel Aviv University Germany: TUD and GSI USA: MIT FRANCE: CEA

- identify 2N-SRC events with inverse
- study isospin decomposition of 2N-SRC

A-2

study A-2 spectator nuclear system

BMN & SRC set-up

Cuts

|θ_{1,2}-30°|<6.5° |Δφ_{1,2}|<7.5° |s,t,u|>2 (GeV/c)²

P_{miss} >0.275 GeV/c

Trigger: T0 · T1 · T2 · TC1 · TC2

Signal rates for 14 days of data taking

Within LAND acceptance

T0 +Target + T1

 ${}^{12}C + p \rightarrow {}^{10}B + pp \text{ np SRC}$ ${}^{12}C + p \rightarrow {}^{10}Be + pp \text{ pp SRC}$ ${}^{12}C + p \rightarrow 2p + {}^{10}B + n \text{ np SRC}$ ${}^{12}C + p \rightarrow 2p + {}^{10}Be + p \text{ pp SRC}$

→ First SRC @ BMN run in March 2018: collected 8 M events

Distributions of Δ electrons in STS4 and GEM4

Au beam, GEANT simulation

Vacuum beam pipe

Helium beam pipe

Conclusions for beam pipe selection

- Rate of Δ electrons is factor 3.5 higher for helium beam pipe relative to vacuum beam pipe taking into account interactions of diffuse beam in gas and beam pipe elements
- Beam pile-up suppression before and after trigger signal eliminate beam induced background
- Helium beam pipe is much simpler technologically and in installation / adjustment procedure

\rightarrow We prefer helium beam pipe

