Объединенный институт ядерных исследований ЛАБОРАТОРИЯ ФИЗИКИ ВЫСОКИХ ЭНЕРГИЙ

Управление поляризацией протонов и дейтронов в коллайдере NICA (ОИЯИ, НТЛ «Заряд», МФТИ)

Докладчик: Филатов Ю.Н.

25 июня, 2018, Дубна

Outline

1. Spin transparency mode in the NICA collider

- 2. Placement of the snake solenoids in the NICA collider
- 3. Polarization control scheme by means of weak solenoids

4. Summary

Spin Motion at Conventional Circular Accelerator

In ideal accelerator $\vec{n} = \vec{e}_z$, $v = \gamma G$ G = (g-2)/2 - gyromagnetic anomaly

In colliders "*with preferred spin direction*", the periodic spin motion along the closed orbit is unique, i.e. the static magnetic lattice determines a single stable orientation of the beam polarization. The fractional part of *the spin tune differs from zero*.

In colliders "*transparent to the spin*", any spin direction repeats every particle turn along the closed orbit, i.e. the accelerator's magnetic lattice is transparent to the spin. The fractional part of *the spin tune is equal to zero*.

Действие арочных магнитов и Сибирских Змеек на поляризацию

Управление поляризацией пучков в коллайдерах

Схема коллайдера	Элементы управления	Орбитальные характеристики
RHIC v=1/2	Ротаторы с сильными полями (R)	Изменяются при управлении
$\begin{array}{c} \mathbf{MEIC} \\ \mathbf{v}=0 \end{array} \begin{array}{c} \mathbf{PC} \\ \mathbf{PC} \end{array}$	Соленоиды со слабыми полями (PC)	Не изменяются при управлении
NICA $\nu=0$ 1/2 SS PC 1/2 SS PC 1/2 SS 1/2 SS 1/2 SS 1/2 SS	Соленоиды со слабыми полями (PC)	Не изменяются при управлении

Ion Polarization Control

	Spin	Delevization	Spin Flipping		
Collider	Rotators based on	Direction at IP	Reversal Time	Orbital Parameters	
RHIC (BNL)	' <mark>strong</mark> ' magnetic fields	Transversal Longitudinal (w/o deuterons)	Few min	Change	
JLEIC (JLAB)	'weak' solenoids	Any directions (any particles: <i>p, d, He</i> ³ ,)	from ms up to sec	Do not change	
NICA (JINR)	'weak' solenoids	Any directions (any particles: <i>p</i> , <i>d</i> , <i>He</i> ³ ,)	from ms up to sec	Do not change	

Spin Flipping System allows one to make spin reversal during an experiment (high precision experiments with polarized ions).

Spin Transparency Mode in NICA Collider

Solenoids for spin transparency mode: $BL = 1 \div 25$ T·m (*protons*), $BL = 3 \div 80$ T·m (*deuterons*) **Orbital parameters do not depend on the beam energy**

Polarization control insertion based on "weak" solenoids with maximum field integral BL < 0.6 T·m (*protons, deuterons*)

Polarization direction (*p*, *d*, ³*He*, ...) :

in **SPD** or **MPD** — any direction in vertical plane (z-y); in **arcs** — any direction in orbit plane (z-x).

Ion polarization control in NICA collider by means of "small" solenoids

Polarization control system in the NICA complex makes it possible:

- to provide polarization control of different particles (p, d, ³He, ...);
- to provide any direction of polarization in the vertical plane SPD and MPD detectors;
- ➤ to solve the problems of spin matching at injection in the NICA collider and polarization measurement as well;
- ➤ to eliminate resonance depolarization during acceleration;
- to realize Spin Flipping System;
- ➤ to control polarization in SPD and MPD detectors without any change of beam orbital characteristics.

Zero-Integer Spin Resonance & Spin Stability Criterion

The total **zero-integer spin resonance** strength

 $\omega = \omega_{coh} + \omega_{emitt}, \qquad \omega_{emitt} \ll \omega_{coh}$ is composed of

• coherent part ω_{coh} due to closed orbit excursions

• incoherent part ω_{emitt} due to transverse and longitudinal emittances

Spin stability criterion

the spin tune induced by the PC solenoids must significantly exceed the strength of the zero-integer spin resonance

 $\nu \gg \omega_{emitt}$

- for proton beam $\nu = 10^{-2}$
- for deuteron beam $\nu = 10^{-4}$

Protons: $\omega_{coh} \sim 10^{-3} \div 10^{-2}$, $\omega_{emitt} \sim 10^{-4} \div 10^{-3}$

Total PC solenoids field integral about of $\mathbf{1} \mathbf{T} \cdot \mathbf{m}$ is sufficient for stabilization and control of proton polarization in NICA collider.

Deuterons:
$$\omega_{coh} \sim 10^{-6} \div 10^{-5}$$
, $\omega_{emitt} \sim 10^{-7} \div 10^{-6}$

Total PC solenoids field integral about of $0.03 \text{ T} \cdot \text{m}$ is sufficient for stabilization and control of deuteron polarization in NICA collider.

Placement of the Snake Solenoids

SOL – 6T Solenoid of 4.2 m (One Siberian Snake = $2 \times SOL$)

VB – arc's Vertical-field Bending magnets, RB – Radial-field Bending magnets

FFQ – Final Focus Quadrupoles, K_F , K_D – quadrupoles gradients

SOL – 6T Solenoid of 0.7 m (One Siberian Snake = $12 \times SOL$)

 δK_F , δK_D – deviation of the quadrupoles gradients for snake matching

$$K_F = K_{F0} + \delta K_F$$
, $K_D = K_{D0} + \delta K_D$, $K_{F0} = 0.519 \text{ m}^{-2}$, $K_{D0} = 0.504 \text{ m}^{-2}$

 Ψ is the angle between the polarization and velocity directions

Longitudinal polarization

 $\Psi = 0^{\circ} \quad \Psi = 180^{\circ}$

Vertical polarization

 $\Psi = -90^{\circ}$ $\Psi = 90^{\circ}$

Schematic layout of the half experimental straight section

- VB arc's Vertical-field Bending magnets,
- **RB** Radial-field Bending magnets, **FFQ** Final Focus Quadrupoles

Polarization at MPD lies in the vertical detector's plane ($\nu \ll 1$): $\vec{S}_{MPD} = (0, n_y, n_z)$

$$\varphi_{z1} = n_z \pi \nu, \qquad \varphi_{z2} = n_y \frac{\pi \nu}{\sin \varphi_x}, \qquad \varphi_{zi} = \frac{(1+G)B_{zi}L_z}{B\rho}, \qquad \varphi_x = \frac{\gamma G B_x L_x}{B\rho}.$$

Polarization at SPD also lies in the **vertical detector's plane** and depends on spin angle in the arc $\gamma G\pi$ and signs of the shake's angles :

Snake Angle Sign		Angles between polarization and	
MPD	SPD	velocity direction: Ψ_{SPD} and Ψ_{MPD}	
+	+	$\Psi_{SPD} = \gamma G \pi - \Psi_{MPD}$	
_	—	$\Psi_{SPD} = -\gamma G \pi - \Psi_{MPD}$	
+	_	$\Psi_{SPD} = -\gamma G\pi + \Psi_{MPD}$	
_	+	$\Psi_{SPD} = \gamma G \pi + \Psi_{MPD}$	

Control solenoid field integrals vs momentum (protons)

Longitudinal $(n_z = 1)$ and vertical $(n_y = 1)$ polarization at SPD detector

Control of the deuteron polarization by the snake solenoids

Let us introduce small deviations $\delta \varphi_{SPD}$, $\delta \varphi_{MPD}$ of the snakes' spin rotation angles $\varphi_{SPD} = \pi - \delta \varphi_{SPD}$, $\varphi_{MPD} = \pi - \delta \varphi_{MPD}$,

Polarization at MPD lies in the vertical detector's plane ($\nu \ll 1$): $\vec{S}_{MPD} = (0, n_y, n_z)$

$$\delta\varphi_{MPD} = 2\pi\nu \left(n_z - \frac{n_y}{\tan\gamma G\pi} \right), \ \delta\varphi_{SPD} = 2\pi\nu \frac{n_y}{\sin\gamma G\pi}$$

Polarization at SPD also lies in the vertical detector's plane

$$\delta \varphi_{MPD} = 2\pi v \frac{n_y}{\sin \gamma G \pi}, \qquad \delta \varphi_{SPD} = 2\pi v \left(n_z - \frac{n_y}{\tan \gamma G \pi} \right),$$

Longitudinal $(n_z = 1)$ and vertical $(n_y = 1)$ polarization at SPD detector

Parameters of solenoids

Концепция быстрой поляриметрии

Кондратенко А.М., Шиманский С.С. (семинар ОИЯИ 25.02.2016) "Новые возможности для высокоточных поляризационных экспериментов на коллайдере NICA: система спин-флипа и быстрая относительная поляриметрия"

$$\vec{n} = \vec{n}(B_{z1}, B_{z2}), \quad v = v(B_{z1}, B_{z2})$$

Можно взглянуть иначе на вопросы, связанные с поляриметрией пучка

- 1. Необходимо во время работы коллайдера обеспечить стабильность поляризации
- 2. Для *измерения степени поляризации* достаточно знать лишь направление *n*-оси, «измерение» направления которой *сводится к измерению магнитных полей*.

Появляется уникальная возможность быстрой поляриметрии пучка в режиме спиновой прозрачности коллайдера NICA.

Новые режимы заполнения колец (все банчи с одной поляризацией в обоих кольцах) и работы (поочерёдное включение спин-флипперов в кольцах):

1-е кольцо +++... |XXX| - - -... |----| - - -... |XXX| +++ |----| +++...2-е кольцо +++... |----| +++... |XXX| - - -... |----| - - - |XXX| +++... (++) (++) (++) (++) (++) (++)

|**xxx**| — ротатор включён, нет набора данных |----| — ротатор не включён, нет набора данных

- Нет проблемы измерения межбанчивой светимости,
- нет проблемы с разной поляризацией в разных модах при работе источника!

Available Spin Modes at the NICA Collider with solenoidal snakes

Snin Modo	Snakes		Spin	Polarization	Polarization	Spin
Spin Widde	SPD	MPD	tune, v	at SPD	at MPD	Flipping
W/O Snakes	OFF	OFF	γG	Vertical	Vertical	
With One Snake (Preferred Spin)	ON	OFF	1⁄2	$\Psi_{SPD} = \gamma G \ \pi$	Longitudinal	
	OFF	ON	1⁄2	Longitudinal	$\Psi_{MPD} = \gamma G \ \pi$	
Spin Transparency	ON	ON	0	Any direction	Any direction	+

Summary

- Режим спиновой прозрачности в коллайдере NICA открывает уникальные возможности
 - манипулировать поляризацией любого сорта частиц (*p*, *d*, ³*He*, ...) в любом месте орбиты не изменяя орбитальные характеристики пучка, в том числе обеспечивать продольную и вертикальную поляризацию пучка в MPD и SPD детекторах
 - быстро измерять поляризацию пучка во время проведения эксперимента (быстрая поляриметрия)
 - реализовать систему спин-флипа для проведения экспериментов с поляризованными пучками на новом уровне точности

Ongoing plan on the Ion Polarization in the NICA Collider

p up to 2.25 GeV/c *d* up to 0.69 GeV/c

Longitudinal polarization at SPD (MPD) detector $\delta BL < 0.15 T \cdot m$

Vertical polarization at SPD (MPD) detector

Ongoing plan

- Введение на первом этапе работ 4-х соленоидов (каждый 6T × 0.7m) в структуру коллайдера и одного такого же соленоида в канал инжекции коллайдера позволит
 - Провести экспериментальную верификацию управления поляризацией протонов и дейтронов в режиме спиновой прозрачности
 - экспериментально изучить время жизни поляризованного пучка в коллайдере NICA без змеек, с одной змейкой и в режиме спиновой прозрачности
 - > провести тестирование системы спин-флипа

β -functions in the NICA collider without snakes

β -functions in the NICA collider with snakes (protons)

Case of the Localized Snake Solenoids

Magenta curves correspond to $\beta_{1,2} = 0.6$ m

Dimond corresponds to the point

 $(\delta K_F = 0.022, \ \delta K_D = 0.0275)$

with β -function values of

$$\beta_1 = 0.6 m, \quad \beta_2 = 0.6 m.$$

β-functions in the NICA collider with snakes (protons)

Case of the Distributed Snake Solenoids

Magenta curves correspond to $\beta_{1,2} = 0.6 \text{ m}$

Dimond corresponds to the point

 $(\delta K_F = -0.011, \ \delta K_D = -0.012)$

with β -function values of

$$\beta_1 \approx 0.6 m, \quad \beta_2 \approx 0.6 m.$$

β -functions in the NICA collider with snakes (deuterons)

Case of the Distributed Snake Solenoids

Magenta curves correspond to $\beta_{1,2} = 0.6 \text{ m}$

Dimond corresponds to the point

 $(\delta K_F = -0.044, \ \delta K_F = -0.032)$

with β -function values of

$$\beta_1 \approx 0.5 m, \quad \beta_2 \approx 0.7 m.$$

Coherent Part of the Spin Resonance Strength

Искажение замкнутой орбиты при случайных сдвигах квадруполей. Среднеквадратичный сдвиг квадруполей 25 мкм

Вывод: Для управления поляризаций протонов достаточно использовать слабые соленоиды каждый с интегралом поля 0.6 T m ($\nu = 10^{-2}$)

Incoherent Part of the Spin Resonance Strength

Частица запущена с нормализованными эмиттансами 5 mm mrad. $\Rightarrow \omega_{emitt} \approx 10^{-4}$

Расчет некогерентной части мощности резонанса. Частица запущена с удвоенными размерами в месте встречи. Полученное значение ω_{emitt} в 4 раза больше $\Rightarrow \omega_{emitt} \propto \varepsilon$

 $\omega_{emitt} \ll \omega_{coh}$

Control of the proton polarization by the snake solenoids

β - functions in the NICA collider

M. Kondratenko et al., Spin Transparency Mode in the NICA Collider with Solenoid Siberian Snakes 33 for Proton and Deuteron Beams. // DSPIN 2017, September 11 – 15, 2017, Dubna

Dispersion functions in the NICA collider

M. Kondratenko et al., Spin Transparency Mode in the NICA Collider with Solenoid Siberian Snakes 34 for Proton and Deuteron Beams. // DSPIN 2017, September 11 – 15, 2017, Dubna

<mark>╶<mark>╢╇╢╴<mark>╟</mark>┝╢╴╴**╢╶╢**╺┉──</mark></mark>

- 0.0365

0.382

-0.0287

-2

-3

─**────────────────────**

Optical Parameters at the Interaction Point

Mode	β_{l}^{*} , cm	β_2^* , cm	D_1^{*}, cm	$D_2^{*}, { m cm}$
Without Snakes	60	60	0	8.4
Proton's Snakes	60	60	-0.6	7.5
Deuteron's Snakes	60	60	3.8	1.6

 β_1^*, β_2^* are β -functions at IP

 D_1^*, D_2^* are dispersion functions at IP

The presented example of matching snake solenoids in the NICA collider lattice demonstrate feasibility of spin transparency mode in NICA. Further optimization of orbital parameters are required.

M. Kondratenko et al., Spin Transparency Mode in the NICA Collider with Solenoid Siberian Snakes 35 for Proton and Deuteron Beams. // DSPIN 2017, September 11 – 15, 2017, Dubna

Схема управления поляризацией в коллайдере NICA

А.М. Кондратенко, Ускорение поляризованных пучков дейтронов и протонов в Нуклотроне с <u>36</u> соленоидальными Сибирскими Змейками, ОИЯИ, 2 Апреля 2014, Дубна