

International workshop NICA accelerating complex: problems and solutions - 2018

A. Demerdjiev, INRNE-BAS

Contents

Introduction

- > INRNE cyclotron Physics Laboratory
- Radiological characterization of the cyclotron vault -FLUKA
- > Description of the model
 - Local target shielding
 - Modeling domain simplified spherical geometry
- > Results and discussion
 - > Nuclides in inner concrete layer
- Summary

TR24 Cyclotron parameters:

- ACSI, Vancouver, Canada
- > Beam Energy: 15 24 MeV
- > Beam Current: 400 µA

>

> Upgradeable to 1 mA

PET: ¹¹C, ¹³N, ¹⁵O, ¹⁸F, ¹²⁴I, ⁶⁴Cu, ⁶⁸Ge

SPECT: ¹²³I, ¹¹¹In, ⁶⁷Ga, ⁵⁷Co, ^{99m}Tc

Cyclotron Physics laboratory current status: » cyclotron successfully delivered - 12.01.2016 » cyclotron center building has to be build » current research activity - numerical studies on the possibilities to produce various medical isotopes; radiological characterization of the setup.

Beamlines, targets and target stations for PET&SPECT radioisotopes

A. Demerdjiev <Numerical optimization of radiation shielding of target used for production of 18F>

Radiological characterization

Evaluate internal hazards:

- Nuclides in target body
- Define nuclides expected to be produced over the operation time of the machine and the vault
- Check vault radiation specs w.r.t. neutrons and gamma rays
- Define cooling time short lived nuclides (airborn ⁴¹Ar?)
- Check operators dose rate

Monte-Carlo approach FLUKA used for simulations

Radiological characterization

- > Emission and transport of secondary particles due to primary nuclear reaction
 - low energy neutron transport
 - > takes into account the geometry of the impinging beam (e.g. point source)
- Assessment of the produced residual nuclei
- Possibility to score the same physics process at different irradiation & cooling times
 - buildup and decay of waste
- > Not possible to include missing X-section libraries

Two-step approach to estimate fluence/waste within the vault

- > Simulate target irradiation, assess secondary particles
 - > (*p, n*), (p, γ)
- > Use secondary particles as source irradiating vault components

¹⁸F high-current liquid target

- > Delivered 3.8 mL targets
- > Check thick target yield in ¹⁸O(p, n)¹⁸F
- Pipe secondary particles to be used as source irradiating the vault

-3 -2 -1 0

Check the FLUKA Monte-Carlo methodics

Thick target – the reaction takes place with the volume of enriched water.

The lower the beam energy, the better the agreement:

- » Real beam not gaussian in any plane, not point-like, no experimental data on phase space
- » The FLUKA model is limited in terms of energy

Secondary particles – real target: density distribution

Secondary particles – real target: energy spectrum

Description of the volume

- Source of secondary particles \rightarrow geometrical center
- target material irradiation → one month, six hours daily, five days per week
- ¹⁸F-target, neutrons emitted → scored and written in files → neutron source irradiating the vault
- > FLUKA → particle transport; nuclides' activities
- > geometry:
 - > at the center \rightarrow sphere R = 20 cm (air)
 - > spherical shell with thickness of 250 cm:
 - » innermost layer 5 cm;
 - » second layer 25 cm;
 - » second and third shells → concrete with Portland cement
- > Two cases of chemical composition of the innermost layer: concrete with Portland cement, borated polyethylene.
- > preliminary results
- > worst case scenario: target and local shielding close to the vault walls

u

A. Demerdjiev <Numerical optimization of radiation shielding of target used for production of 18F>

Results and discussion: Nuclides in innermost layer

After a month of cooling

>Nuclides in the first concrete layer for the two cases without (left) and with borated polyethylene local target shielding.

Activities in [Bq] of some of the nuclides generated in the first 25 cm thick layer behind the shielding. The borated polyethylene layer here has thickness of 5 cm.

Isotope	High-density concrete	Borated polyethylene	Parent nucleus
⁵⁵ Fe	1.0×10^{6}	9.4×10^{5}	⁵⁵ Mn
⁴⁵ Ca	3.9×10^{6}	3.9×10^{6}	⁴⁴ Ca
⁴¹ Ca	472	491	⁴⁰ Ca
³⁹ Ar	3264	2164	³⁹ K
³⁷ Ar	1.5×10^{6}	7.5×10^{6}	⁴⁰ Ca

Independently from the chemical composition of the innermost shielding, all three cases show similar levels of activities for the nuclides seen.

Summary

- Preliminary results showing that taking into account the activity of long-living nuclides a layer of 5 cm is preferable over no shielded high-density concrete but it is not sufficient.
- Possible next steps are: changing the concrete recipe with one containing marble (e.g. reduced content of Si); studying the effect of changing the position of the borated polyethylene layer within the vault wall; and optimizing the thickness of the local shielding.

Thank you for the attention!

G. Asova, N. Goutev, D. Tonev