

Research possibilities at Veksler and Baldin Laboratory of High Energy Physics JINR (*J***ΦBອ) - Polish activity.**

<u>M. Bielewicz^{1,2},</u> M. Peryt^{3,2}, Ł. Tomków^{4,2}

e-mail: marcin.bielewicz@ncbj.gov.pl

- 1. National Centre for Nuclear Research, Otwock-Świerk 05-400, Poland
 - 2. Joint Institute for Nuclear Research, 141980 Dubna, Russia
- 3. Warsaw University of Technology, Warsaw pl.Politechniki, Poland
 - 4. Wrocław University of Technology, Wrocław, Poland

High Energy Physics Laboratory - Polish activity.

Outline

- 1. Review of cooperation development
- 2. NICA colider
- 3. Slow Control System
- 4. MCORD project
- 5. Kriogenic
- 6. Nuclear Phisics (Quinta)

1. Review of cooperation development – begin of cooperation

Almost half of century of cooperation in the domain of high energy physics

Zbigniew Strugalski (Deputy Director of the Laboratory of High Energies (LVE): 1969-72) has initiated and actively developed the cooperation of Polish institutions with LVE in the analysis of Xenon bubble chamber data. During almost 20 years many Polish physicists, mainly from the Institute of Physics Warsaw University of Technolohy worked effectively in the "Polish Sector" achieving scientific degrees of dr, dr hab. and prof.

Xenon bubble chamber pictures were especially effective in the registration of photons.

This participation was soon extended to the analysis of light and heavy ion collisions registered in the propane bubble chamber.

During the years (1978 – 84) the Deputy Director of LVE was again Polish scientist (**Jerzy Bartke**).

Collisions of Carbon nuclei registered in the propane bubble chamber with the Tantalum plates inside..

Propane Bubble Chamber Group meeting in Dubna

1. Review of cooperation development - External Activity

Participation of JINR and Polish physicists in the same heavy ion experiments at the largest physics laboratories; some examples

Brookhaven, RHIC Experiment STAR

1. Review of cooperation development – Collaboration Agreement

FRAMEWORK COLLABORATION AGREEMENT

(THE "AGREEMENT")

BETWEEN: WARSAW UNIVERSITY OF TECHNOLOGY ("WUT"), established at Warsaw, Poland, duly represented by Prof. Rajmund Bacewicz, Vice-Rector for Research,

AND: JOINT INSTITUTE FOR NUCLEAR RESEARCH ("JINR") an Intergovernmental Organization having its seat at Dubna, Russia, duly represented by Prof. Victor A. Matveev, Director of the JINR

Signed on 6 November 2015 The Warsaw University of Technology The Joint Institute for Nuclear Research (JINR) (WUT) Prof. Rajmund Bacewicz Prof. Victor A. Matveev Vice-Rector for Research Director of the JINR

NGA - Nuclotron Ion Collider fAcility BM@N - Baryonic Matter at Nuclotron **PD - Multi-Purpose Detector ICS - Detector Control System** EqDb – Equipment Database **SC**-Slow Control **MCORD - MPD Cosmic Ray Detector**

2. NICA complex

2. Old Sychrophasotron Magnets - Booster)

2. NICA complex

• Nuclotron (VBLHE) – wide spectrum of possible energies $E_p = 500$ MeV to 8 GeV, strong focusing, $10^{12} - 10^{13}$ protons per hour

2. NICA complex

The international mega-science project "NICA complex" is aimed in the study in the laboratory of the properties of nuclear matter in the region of the maximum baryonic density.

2. NICA – MPD (Multi Purpose Detector)

- CD-central detector, and (FS-A, FS-B) - two forward spectrometers
- Superconductor solenoid (SC Coil) and magnet yoke
- inner detector (IT)
- straw-tube tracker (ECT)
- Time-projection chamber (TPC)
- Time-of-flight system (TOF)
- Electromagnetic calorimeter (EMC)
- Fast forward detectors (FFD)
- Zero degree calorimeter (ZDC).

http://nica.jinr.ru/video/general_compressed.mp4

NICA - Seminar 11.I.2018

Suggestions:

DEFINITION

DEFINITION:

The Slow Control System (SCS) is an electronic system, which is intended to support and enable operation of complex equipment for any physical experiment, e.g. for detectors in high energy physics experiments. Elektroniczny System sterowania procesami powolnymi (milisekundy i dłużej)

Umożliwia eksploatacje urządzeń elektronicznych w dowolnym eksperymencie

Np. detektorami lub urządzeniami kontrolnymi/sterującymi Ustawianie napięć dla wszystkich komponentów (np. tysiące detektorów)Ustawienia zapisane w bazie danych, i automatycznie ustawiane przez komputer . Bieżąca kontrola tych parametrów i korekta

Suggestions:

CHARACTERISTICS

CHARACTERISTICS of the SCS:

Modular Scalable Multiuser Open EqDb (Database)

Suggestions:

BLOK DIAGRAM SCS

- IMPLEMENTATION; BASE UNIT 42U;

WUT-JINR VPN

3. Gaz system descryption

4. Cosmic Ray Detector – Goals

Cosmic ray air shower created by a 1TeV proton hitting the atmosphere 20 km above the Earth. The shower was simulated using the <u>AIRES</u> package.

4. MCORD - proposition

One surface on full circumference

4. MCORD scintilators

4. MCORD - Design, modeling and manufacturing THE MUON DETECTOR SCHEME

Conceptual design of the MCORD detector readout chain.

Legend: S (violet) – plastic scintillator, (blue) – SiPM, P (red) – power supply with temperature compensation circuit, T (brown) – temperature sensor, A (green) – amplifier, D (yellow) – MicroTCA system with ADC boards, C (orange) – Analog Front End Module.

Photomultiplier are not so good for us!!! MPPC are much better !!!

Standard MTCA crate

5. Cryogenics - Polish input

Thermometry – calibration of helium temperature sensor

- Decrease of cost of temperature sensors for NICA by calibrating them on-site
- Approximately 4000 sensors needed for the accelerator
- Cut the cost from \$400 for calibrated sensor to approximately \$50 for noncalibrated
- Allowed measurement error of 0.002%
- HTS Current leads
- Cryostat design
- Quench safety

5. Cryogenics - Polish input

- Superconducting magnetic shields for electron cooling system of NICA
 - Reduction of beam size and increase of the number of potential collisions
 - Application of well-defined electron beam interacting with ion beam
 - High magnetic field homogeneity required
- Increase of magnetic field homogeneity
 - Proper placement of HTS tape strips allows to obtain homogeneous magnetic field
 - Cheap and efficient solution in the context of cryogenically cooled accelerator

6. Nuclear Phisics – Experimentals assemblys

6. Nuclear Phisics – The Quinta Assembly

The Quinta is surrounded by lead bricks 100 mm thick on all six sides of total weight 1780 kg. Shield work as a neutron reflector and as a biological shielding for γ -rays. In the front is a square window 150x150 mm.

The setup "Quinta" on the irradiation position (December 2011 - March 2013)

6. Example of Experimental data

Y-85 spatial distribution based on gamma line 231.647 keV

Rozkład przestrzenny(radialny & osiowy) produkcji Y85 dla wiązki deuteronów o energii 4GeV, E+T 2009r. Y-87 spatial distribution based on gamma lines 388.53 and 484.8 keV S2

Rozkład przestrzenny (radialny & osiowy) produkcji Y85 dla wiązki deuteronów o energii 2GeV, Quinta III.2011r

Thank you

