

IceCube High Energy Starting Events at 7.5 Years - New Measurements of Flux and Flavor

- IceCube observed astrophysical neutrinos
- Improved understanding of detector, systematics, and atmospheric background
- Redo High-Energy Starting Event (HESE) analyses with 7.5 years and improved techniques to:
 - Obtain precise diffuse flux characterization
 - Obtain robust particle physics measurements
 - Measure flavor composition → learn about environment at production sites
 - Obtain strong DM & BSM limits

Veto region rejects atmospheric muons and neutrinos

High neutrino signal purity at high energy

A fraction of atmospheric neutrinos is vetoed by accompanying muons

Atmospheric Passing Fraction

Suppression of downgoing atmospheric neutrinos

Key to measuring astrophysical component

Schönert, Gaisser, Resconi, Schulz Phys. Rev. D 79; 043009(2009) Gaisser, Jero, Karle, van Santen Phys. Rev. D 90; 023009(2014) Argüelles, Palomares-Ruiz, Schneider, Wille, Yuan JCAP 1807 (2018) no.07, 047

Passing Fraction = Cosmic Ray Flux × Shower Development × Muon Energy Loss × Detector Response

Schönert, Gaisser, Resconi, Schulz Phys. Rev. D 79; 043009(2009) Gaisser, Jero, Karle, van Santen Phys. Rev. D 90; 023009(2014) Argüelles, Palomares-Ruiz, Schneider, Wille, Yuan JCAP 1807 (2018) no.07, 047

7.5 Years of Starting Events

- 1.5 Additional years of data added
- Detector calibration
- Ternary topology ID added
 - Cascades
 - Tracks
 - Double Cascades
- Dedicated algorithm for topology ID

Above 60TeV: 60 events

- 12 new events in 2016 season
- 5 new events in 2017 season

All energies: 102 events

- 22 new events in 2016 season
- 9 new events in 2017 season

7.5 Years of Starting Events

Classic signature of v_e CC and all flavor NC interactions

Classic signature of v_{μ} CC interactions

7.5 Years of Starting Events

7.5 Years of Double Cascades

Diffuse Astrophysical Neutrino Flux

- Best fit single powerlaw
 2.19^{+1.10}_{-0.55} × E^{-2.91(+0.33,-0.22)}
- Prompt 90% upper limit 12.3×BERSS model
- Fit performed for events above 60TeV
- Compatible with results from 6 year analysis

E² Φ=2.19*10⁻¹⁸(E/100TeV)^{-0.91} [GeV cm⁻² s⁻¹ sr⁻¹]

Honda, Kasahara, Midorikawa, Sanuki Phys.Rev. D75 (2007) 043006 Bhattacharya, Enberg, Reno, Sarcevic, Stasto JHEP 1506 (2015) 110

Diffuse Astrophysical Neutrino Flux

- Best fit single powerlaw
 2.19^{+1.10}_{-0.55} × E^{-2.91(+0.33,-0.22)}
- Prompt 90% upper limit 12.3×BERSS model
- Fit performed for events above 60TeV
- Compatible with results from 6 year analysis

E² Φ=2.19*10⁻¹⁸(E/100TeV)^{-0.91} [GeV cm⁻² s⁻¹ sr⁻¹]

Honda, Kasahara, Midorikawa, Sanuki Phys.Rev. D75 (2007) 043006 Bhattacharya, Enberg, Reno, Sarcevic, Stasto JHEP 1506 (2015) 110

Diffuse Astrophysical Neutrino Flux

- Best fit single powerlaw
 2.19^{+1.10}_{-0.55} × E^{-2.91(+0.33,-0.22)}
- Prompt 90% upper limit 12.3×BERSS model
- Fit performed for events above 60TeV
- Compatible with results from 6 year analysis

Honda, Kasahara, Midorikawa, Sanuki Phys.Rev. D75 (2007) 043006 Bhattacharya, Enberg, Reno, Sarcevic, Stasto JHEP 1506 (2015) 110

Cross-section Measurement

Results are consistent between statistical methods. Measurement is also consistent with TGM observation.

- ν_τ interaction
- Charged current (71%)
- Tau decays into hadrons / electrons (83%)
- Mean length: 50m x energy/1PeV

simulated 10PeV Double Cascade event

Background

000000			

Cascades: All NC interactions v_e CC interactions v_τ CC interactions with unresolvable lengths

Tracks: ν_μ CC interactions Atmospheric muons ν_τ CC interactions with muonic tau decay

All HESE events in 7.5 years of data above 60 TeV

All HESE events in 7.5 years of data above 60 TeV

Observables from direct double-cascade reconstruction

Selection

Selection

Juliana Stachurska

Selection

- Flavor composition measurement in global fit measurement:
 - only Cascade and Track topologies
 - large combined data sample
 - Best-Fit:

 $v_e:v_\mu:v_\tau = 0.49:0.51:0.0$

- First flavor measurement with ternary topology in 6 years of HESE data:
 - no Double Cascades found
 - Best-Fit:
 v_e:v_µ:v_τ = 0.51:0.49:0.0

M. Usner, PoS(ICRC2017)974

Results

- 2 events in Double Cascade bin
- Soft spectral index: 2.9 → expect ~2.1 events (~1.4 signal + ~0.7 background)

Results

Maximum likelihood flavor composition fit based on 2D histograms:

- Zenith & energy for single cascades, tracks
- Length & energy for double cascades

- Best-fit $v_e:v_\mu:v_\tau = 0.29:0.50:0.21$
- Consistent with previous measurements and expectation of ~1:1:1 for astrophysical neutrinos
- Zero v_{τ} flux cannot be excluded
- Systematic errors not included

Event #1 (Big Bird)

- Observed 2012
- Shows no clear preference between a single cascade and double cascade hypothesis

Event #2 (Double Double)

- Observed 2014
- Observed light arrival pattern clearly favors double cascade hypothesis

Energy Asymmetry

Energy asymmetry for best-fit spectrum, and a $v_e:v_\mu:v_\tau = 1:1:1$ composition

- Only a straight cut was used
- Afterwards all events in Double Cascade bin treated the same regardless of energy asymmetry value
- Mainly due to
 computational issues
- Plan: incorporate all information into "tauness"

BSM Flavor Overview

New operators can be interpreted in different new physics contexts

- → Lorentz and CPT Violation → Noncommutative field theory
- → Dark Energy Interaction
- → Equivalence Principle Violation

Introducing new physics in the mixing matrix elements

$$H \sim \frac{m^2}{2E} + \mathring{a}^{(3)} - E \cdot \mathring{c}^{(4)} + E^2 \cdot \mathring{a}^{(5)} - E^3 \cdot \mathring{c}^{(6)} \dots$$

BSM Flavor Overview

BSM Flavor Results

- Limits given per operator dimensionality. Dimension 6 is a Fermi-like interaction between the BSM field and neutrinos.
- Limits given for fixed initial flavor composition and given a BSM operator texture.
- No constraints obtained if the initial flavor composition is pionbased (1:2:0).
- First BSM physics constraints using astrophysical neutrino flavor information.
- Constraints can be reinterpreted in terms of other BSM physics since they have been expressed as effective operators.

Dark Matter Analyses Overview

DM annihilation

- Heavy galactic DM self-annihilating into SM particles
- Expected v excess peaked at the GC
 →Additional component added to the
 diffuse fit

DM scattering

- Astrophysical vs scattering off light galactic DM
 - Expected GC v deficit →Modified the astro. component in the diffuse fit

DM decay

- Heavy galactic or extra-galactic DM decaying into SM particles
- Expected anisotropic v excess
 →Additional component added
 to the diffuse fit

Dark Matter: Annihilation Limits

Dark Matter: Scattering Limits

Cosmological constraints from Escudero et al. (2016) using large scale structure.

Summary

- HESE analysis reworked with latest information
- Updated characterization of the astrophysical flux
- Algorithm-based ternary topology ID: Cascades, Tracks, Double Cascades
 - Identified 2 v_{τ} candidate events
 - One of which shows obvious signatures of a double cascade
 - A posteriori analysis of the events is ongoing
- New limits on Lorentz violation and DM
- New cross section measurement
- Extension to lower energies for precision measurements!
- MESE! Medium Energy Starting Events >1TeV

Updates & publications coming soon - STAY TUNED

BACKUP

Systematics Treatment

Systematic	HESE 6	HESE 7.5
Passing Fraction	GJKvS	APRSWY + uncertainties
Conventional/ Prompt/Muon Bkg	normalization	normalization
Ice Model	resimulation	model error
CR Spectrum*	n/	spectral index
Hadronic Model*	n/	included
pi/K ratio*	n/	included
Detector energy efficiency*	n/	included

Plus:

- new fitting tools
- new SAY likelihood taking into account limited MC statistics

*subleading systematics for astrophysical flux measurement

- Data reprocessing after recalibration of the detector:
 - single photon electron (SPE) peak shift → reconstructed energy decreased by ~5% on average
 - "Pass 2"
- Improved software:
 - minimizer tolerance decreased
 - various minor bugfixes
- Improved ice model "Spice3.2":
 - better constrained bulk ice parameters
 - 25% higher anisotropy
 - holeice modeling
- New "SAY" likelihood:
 - takes into account limited MC statistics
- Now integral part of HESE:
 - events classified using ternary topology ID based on observables