

Particle Physics with ORCA

A. Domi

VLVnT Conference 2018, Dubna

ORCA & ARCA Detection Technology

Alba Domi, VLVnT 2018 - Dubna

ORCA/ARCA DETECTORS

ORCA:

DENSE BUILDING BLOCK OPTIMISED FOR INTERMEDIATE ENERGIES (1-100 GEV)

TOTAL OF 64170 PMTS

ARCA:

SPARSE BUILDING BLOCKS OPTIMISED FOR HIGH ENERGIES (>1 TEV)

	ORCA	ARCA
String spacing	23 m	90 m
Vertical spacing	9 m	36 m
Depth	2470 m	3500 m
Instrumented mass	1x 8 Mton	2x 0.6 Gton

Alba Domi, VLVn1

ARCA & ORCA Science Scope

Low Energy:	Intermediate Energy:	High Energy:
MeV < E_{ν} < 100 GeV	10 GeV < E _V < 1 TeV	E _v > 1 TeV
ν oscillations,	Dark Matter search,	✓ from extra-
Supernovae	Monopoles	terrestrial sources
KM3NeT/ORCA	KM3NeT/ORCA+ARCA	KM3NeT/ARCA

4

Measure of Mass Ordering

- Source: Atmospheric neutrinos.
 - Free, natural beam of known composition (HKKM 2014 flux).

Measure of Mass Ordering

- ν_{e} interaction with electrons.
- Oscillation pattern distorted by Earth's matter effects:
 - Resonance in the oscillation probabilities in the few-GeV range.
 - Earth Model: PREM Model [1] with 42 layers and realistic Z/A values.

Animation Ref: J. Coelho - http://www.apc.univparis7.fr/Downloads/antares/Joao/animations/

[1] Adam M. Dziewonski and Don L. Anderson. Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25(4):297–356, 1981.

Event Selection and Detector Response

 Random decision forests to reject background and distinguish between tracklike and shower-like events.

Multi-dimensional response matrix is built from detector simulations.

ORCA's effective mass:

Sensitivity to NMO

 $\chi^2 = (N_{NO} - N_{IO})|N_{NO} - N_{IO}|/N_{NO}$

Ref: S. Bourret, L. Quinn: PoS Neutrino 2018

Sensitivity to NMO

Statistical Methods: LLR tets statistic + χ^2 minimisation

Ref: S. Bourret, L. Quinn: PoS Neutrino 2018

STERILE NEUTRINOS

Search for Sterile Neutrinos

- **Source:** Atmospheric neutrinos.
- The possible presence of a light sterile neutrino affects the oscillation pattern through the Earth.

STANDARD 3 v CASE

Animation Ref: J. Coelho http://www.apc.univ-paris7.fr/ Downloads/antares/Joao/ animations/

Alba Domi, VLVnT 2018 - Dubna

Search for Sterile Neutrinos

• **Detector response** evaluated with Letter of Intent [1] configuration (new sensitivity will be available soon).

[1] KM3NeT LoI: <u>arXiv:1601.07459</u>

Different impact of NMO and Sterile Neutrino

Different impact of NMO and Sterile Neutrino

Sensitivity to Sterile Neutrino

ORCA Sensitivity to 1 sterile neutrino for 1 year of data taking!

Ref: J. Coelho, ICRC proceeding, DOI: 10.22323/1.301.1027

Non Standard Interactions (NSI)

- * ORCA sensitive to NSI effects of order 10% of the Fermi int.
- ***** Direct bounds are more than 10x larger in some cases.
- ***** ORCA improves over current atmospheric scale bounds.
- * Limits competitive with global limits from oscillation.

Tau Neutrino Appearance

Indirect Detection of Dark Matter

- *** DM annihilation in the Sun.**
- * ν production (E > GeV).
- ***** Constrain DM-DM cross section.
- Sensitivity obtained with Lol

detector.

POSSIBLE EXTENSIONS: P2O -> Protvino2ORCA Beam

Protvino U70 proton accelerator:

- * 2-7 GeV Neutrino Beam (to be constructed).
- Sensitivity to Mass Ordering at least 5σ
 after 1 year of beam.
- * Sensitivity to measure CP phase.

See talk of Brunner with updated sensitivity.

Ref: Brunner, arXiv:1304.6230

Alba Domi, VLVnT 2018 - Dubna

POSSIBLE EXTENSIONS: Super-ORCA

- * Task: Measure δ_{CP} with atmospheric neutrinos.
 - Possible with
 v energies ≈3 GeV → below ORCA's energy threshold!
 - Precise flavour identification, better energy and direction resolution needed.
 - ➡ 5-10x denser detector.
 - ➡ Assumed ~115k 3" PMTs/Mton
 - → ~1% density of SuperK

Ref: J. Hofestädt, T. Eberl, M. Bruchner, Neutrino 2018

Alba Domi, VLVnT 2018 - Dubna

Thank you for your attention!

Backup Slides

Neutrino Mass Ordering

Impact on:

- Magnitude and nature of neutrino mass.
- Distinguish between different theoretical models.
- * Impact on $0\nu\beta\beta$ studies.
- * Core-collapse supernovae.

W. Winter, Neutrino mass hierarchy: Theory and phenomenology

Search for Sterile Neutrinos

- 3+1 model:
 - $\Delta m_{41}^2 = 0.3 \text{ eV}^2$
 - $|U_{e4}|^2 = \sin^2 \theta_{14} = 0$
 - $|U_{\mu4}|^2 = \cos^2\theta_{14}\sin^2\theta_{24} = 0.02$
 - $|U_{\tau 4}|^2 = \cos^2 \theta_{14} \cos^2 \theta_{24} \sin^2 \theta_{34} = 0.18$
 - Loose Gaussian prior on $\Delta m_{31}^2 = (2.5 \pm 0.5) \times 10^{-3} \text{ eV}^2$
 - Fixed mass hierarchy: normal
 - Starting value of θ_{23} in lower octant

Tau neutrino appearance

1 month, shower-like, $N(v_{\tau} CC)/(N(all v))^{0.5}$ 0 **KM3NeT** Preliminary 0.4 0.35 0.3 -0.4 0.25 -0.5 0.2 -0.6 0.15 -0.7 0.1 -0.8 0.05 -0.9 -1 1.6 1.8 2 log₁₀(E_{reco}[GeV]) 0.6 0.8 1.2 0.4 1.4 1