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OUTLINE

● Introduction. Karlsruhe-Russian 
Astroparticle Data Life Cycle Initiative

Part I. A distributed data storage for 
astroparticle physics

● Part II. Convolution Neural Network for 
particle identification

● Conclusions
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ASTROPARTICLE.ONLINE
• Karlsruhe-Russian Astroparticle Data Life Cycle 

Initiative
• Supported by RSF and Helmholtz Society
• Participants: SINP MSU, ISU, ISDCT SB RAS, KIT
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A DISTRIBUTED DATA 
STORAGE FOR ASTROPARTICLE 

PHYSICS.
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REQUIREMENTS FOR 
THE DATA STORAGE

• Multiple experiments (TAIGA, KASCADE, etc.)
• Hundreds of terabytes and more of raw data at 

each site
• Remote access to data as local file systems
• On-demand data transfer by requests only
• Automatic real-time updates
• No change to existing site infrastructure, only 

add-ons
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Storage architecture
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POSSIBLE SOLUTIONS



VLVNT 2018, Oct. 01 - 04, JINR A.Kryukov8/28

CERNVM-FS

• Data are left untouched in their own file system

• CernVM-FS indexes the data and changes, stores 
only the metadata (indices, checksums, locations, 
etc.) and data tree

• CernVM-FS uses HTTP as the data transfer protocol, 
so there’s no firewall problem

• Data transfer starts only on actual reads

• Multilevel cache-proxy servers
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CERNVM-FS
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CURRENT STATUS

✓ Used CernVM-FS to export the existing data storage of each 
site as is without changing the file system

✓ Merged different data trees to a single one at the 
aggregation server level

- Metadata search and API (in progress)

- Access policy (in progress. Currently, the whole data tree is 
accessible for everyone)
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FUTURE WORK

• Sub-tree export (build a CVM-FS middleware module or an 
independent bridging module?)

• Data access policy and API (RESTful API or GraphQL?)

• Metadata indexing and parameterized search (RDBMS 
(PostgreSQL) or NoSQL (column-based or row-based)?)

• HDFS-prototype and AFS-prototype

• Benchmark
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CONVOLUTION NEURAL 
NETWORK FOR PARTICLE 

IDENTIFICATION
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Deep Learning. 
Neural Networks

• Deep learning use large NN 
with some hidden layers.

• A lot of activation functions 
are used.
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Deep Learning. 
Error back-propagation

● Error back-propagation algorithm
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Deep Learning. 
Error back-propagation

●Correction of weights
●This is  a gradient descent methods for NN
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Deep Learning.
Convolution Neural Networks

• Convolution layers apply a convolution 
operation (cross-correlation, or simply 
filtering) to the input, passing the result to 
the next layer, and so on.

• Special features of 
feedback avoid overfitting 
that was the problem for 
conventional ANN.

How CNN is realized
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TAIGA telescope 
image example
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Hexagonal to square grid 
tranformation

● There are many ways to map a 
hexagonal grid on a square one.

● We used an inclined coordinate 
system for preliminary researches.
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Monte Carlo and 
blind analysis

● Training datasets: gamma-ray and proton images 
(Monte Carlo of TAIGA-IACT, real energy spectrum); 
night sky background, trigger procedure and detector 
response added, but neither cleaning nor preselection 
applied.
Test datasets: after CNN training, datasets (different 
from training ones) of gamma-ray and proton images 
in random proportion (blind analysis) were classified 
by each of the packages: TensorFlow and PyTorch. 
Each package output was ‘probability’ of any image to 
be gamma-ray of proton.
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Simulated gamma-ray 
image example: 

‘as is’, no cleaning
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Simulated gamma-ray 
image example: 

after soft cleaning
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Particle identification 
quality
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Particle identification
quality

Simple 2-D 
technique

PyTorch TensorFlow

Without 
cleaning

1.76 1.74 1.48

With 
cleaning

1.70 2.55 2.99
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Q vs CNN output parameter 
(various CNN after same soft cleaning)
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Number of correctly identified -rays 
vs CNN output parameter 

(Problem of the ‘cut value’ choice)
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Conclusions

● The distributed storage provide unified access 
to astroparticle data of many collaborations 
which permit to make multi-messenger 
analysis.

● Modern deep learning analysis techniques 
permit to get more high quality of the analysis 
in particular for
– Particle classification
– Parameters of the showers and so, the 

properties of primary particles.
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THANK YOU!

QUESTIONS?
VLVNT 2018, Oct. 01 - 04, JINR A.Kryukov
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