

Investigation of neutrino properties with the vGEN spectrometer

Lubashevskiy¹ A.V. for the vGEN collaboration

¹Joint Institute for Nuclear Research (Dubna, Russia)

Motivation

Measurement of the neutrino properties is a very important task for a particle physics, astrophysics and cosmology. Being one of the most abundant particle in the Universe its detection is very challenging due to very weak interaction with matter. Investigations with vGEN:

- Continue search for Magnetic Moment of Neutrino (MMN) performed by GEMMA experiment (expected of sensitivity ~ $9\cdot10^{-12} \mu_B$)
- Investigate Coherent Elastic Neutrino Nuclear Scattering (CEvNS):
 - Sterile neutrino
 - $\circ~$ Non-standard neutrino interactions
 - \circ Reactor monitoring
- Investigate background for dark matter experiments, other applications..

VLVnT-2018, Lubashevskiy

CEvNS detection

CEvNS cross section is:

- $\sigma_{tot} \approx \frac{G_F^2}{4\pi^2} \cdot N^2 \cdot E_v^2$
- $E_v < 50$ MeV (full coherency below ~ 30 MeV)
- Cross section is enhanced by several orders of magnitude
- Proportional to the number of neutrons squared
- Recoil energy is very low less than few keV

Only a small part of recoil energy can be

Detection of CEvNS

- Signal from CEvNS continuous spectrum at very low energies.
- Hard to distinguish such type of signal from noise spectrum.
- Detecting CEvNS is a big challenge, however it is became possible with recent development of experimental techniques.

To detect CEvNS we need:

- Powerful source of neutrino
- Detector with very low energy threshold and good resolution
- Low background
- Clear discrimination signal from the noise
- High efficiency and big detector's mass

KNPP

Neutrino source

Experimental setup can be located only at ~ 10 m from 3 GW reactor's core. The available neutrino flux is > $5 \cdot 10^{13} \text{ v/(s \cdot cm^2)}$ - the highest in the field. Experimental setup is located under the reactor -> ~50 m w.e. (good shielding against cosmic radiation)

Lifting mechanism

To distinguish of signal from noise spectrum we will use:

- Reactor OFF/ON analysis
- Lifting mechanism which moves experimental setup away and to the core (~10 -12.5 m).

HPGe detector for vGEN

HPGe detectors are used to detect signal from neutrino. In April 2018 we received new custom made low threshold HPGe detector, produced in a collaboration with CANBERRA (Mirion, Lingosheim). It allows to investigate much lower energy region than we did before.

Measurements at LSM

Internal background level of the detector were tested at LSM underground laboratory (Modane, France) from May – July 2018. Overburden equivalent to 4800 m w.e. allows to suppress μ flux in ~ 6.10⁶ times, neutrons ~ 10⁴ times.

02.10.2018

Tests at LSM

Passive shielding from former Edelweiss-I experimental setup was used to suppress background from surrounding.

Low energy spectrum

Only simple ADC acquisition system were available on site for these measurements.

Channel 2 - 10 us

Most of the background at low energies is from cosmogenic activation and decays in time. Background level is better than in some dark matter experiment (for example COGENT).

Tests at JINR

After measurements at LSM detector was deliver to JINR (August 2018).

- Started measurements with new electronics based on real time ADC.
- It allows more efficiently suppress noise events including signal generated by reset of preamplifier.

Tests at JINR

- Passive shielding from lead, copper and borated PE is used to suppress background from surrounding.
- μ veto were installed for suppression of cosmogenic background.
- Exactly the same scheme will be at KNPP

Tests at JINR

Achieved energy resolution is 78.0(3) eV (FWHM) (at LSM it was 85 eV).

Measurements with pulse generator

Energy threshold

One of the most important parameter of the experimental setup is the energy threshold. Measurements with the pulser demonstrates possibility to acquire signal below 200 eV.

Efficiency measured with pulse generator

VLVnT-2018, Lubashevskiy

Energy threshold

One of the most important parameter of the experimental setup is the energy threshold. It was demonstrated possibility to acquire signal below 200 eV.

Measurements with pulse generator

Conclusion

- First low threshold detector for vGEN spectrometer was produced and tested. In total we will have four detectors with a total mass of 5.5 kg.
- Measurements at underground laboratory demonstrate the background level comparable with dark matter experiments.
- Achieved energy resolution is 78 eV (FWHM). Possibility of detection of events below 200 eV was demonstrated.
- Experimental setup is ready to be deliver to KNPP.