DARK MATTER SEARCHES IN

J. A. Aguilar on behalf of IceCube

Assumption N°1: Dark Matter Exists

VLVNT 2018 - Dubna Russia

DARK MATTER

Assumption N°2: Dark Matter is a Particle...

VLVNT 2018 - Dubna Russia

Weakly interacting

*WEAKLY INTERACTING MASSIVE PARTICLES

Indirect Detection of Dark Matter

- No need of specialized detectors: Gamma-ray telescopes, neutrino detectors, CR-experiments

VLVNT 2018 - Dubna Russia

Search for products of dark matter annhilation processes: Focus on large reservoirs of dark matter

Dark Matter Searches Where to Look?

Dwarf spheroidal Galaxies Cluster of Galaxies Probe velocity-averaged DM annihilation cross section $\langle v\sigma_A \rangle$

Local Sources (Sun, Earth)

Only accessible with neutrinos Under equilibrium they can probe σ_{SI} and σ_{SD}

VLVNT 2018 - Dubna Russia

Galactic Halo

Probe velocity-averaged DM annihilation cross section $\langle v\sigma_A \rangle$

Galactic Center

Probe velocity-averaged DM annihilation cross section $\langle v\sigma_A \rangle$

The Galactic Center The Astrophysical Input

Dark Matter Searches In a Nutshell

$$\frac{\mathrm{d}\Phi_{\nu}}{\mathrm{d}E_{\nu}} = \frac{1}{4\pi} \frac{\langle \sigma_A v \rangle}{2m_{\chi}^2} \frac{\mathrm{d}N_{\nu}}{\mathrm{d}E_{\nu}} \int_0^{\Delta} \frac{\mathrm{d}V_{\nu}}{\mathrm{d}E_{\nu}} \int_0^{\Delta} \frac{$$

Theory input: SUSY?

Astrophysics input

Measurement

Constrain!

VLVNT 2018 - Dubna Russia

Galactic Center ANTARES & IceCube

Dark Matter from Celestial Bodies

Celestial Bodies Velocity Distribution

High dark matter masses are only captured in the low velocity regime

VLVNT 2018 - Dubna Russia

Figure from https://arxiv.org/pdf/1308.1703.pdf

Celestial Bodies Results from the Sun

VLVNT 2018 - Dubna Russia

Celestial Bodies Results from the Earth

- No thermal equilibrium
- Background needs to be very well understood: Earth has an unique position in the sky.
- Analysis very sensitive to astrophysical uncertainties (dark disc, velocity distribution)

VLVNT 2018 - Dubna Russia

Decaying Dark Matter Lifetime

Extra-Galactic $\frac{\mathrm{d}\Phi_{\nu}}{\mathrm{d}E_{\nu}} = \frac{1}{4\pi} \frac{\Omega_{\chi}\rho_c}{m_{\chi}\tau_{\chi}} \int_0^\infty \mathrm{d}z \frac{c}{H(z)} \frac{\mathrm{d}N_{\nu}}{\mathrm{d}E_{\nu}} \Big|_{\mu}$

VLVNT 2018 - Dubna Russia

Kinematically dark matter could decay as long as the lifetime is greater than the age of the Universe.

Decaying Dark Matter Lifetime

- Two IceCube independent data samples:
 - Track-like with six years of data
 - Cascade-like with two years of data
- Dark Matter alone cannot explain IceCube neutrino flux.
- Best limits > 10 TeV

VLVNT 2018 - Dubna Russia

IceCube Collaboration arXiv:1804.03848

Neutrino Dark Matter Scattering

- energy)

VLVNT 2018 - Dubna Russia

 Scattering of high energy cosmic neutrinos on DM in the halo can lead to a **deficit of high energy neutrinos** from the GC

Focusing on HE neutrinos (cross-section increases with

Conclusions

- and systematics.
- need strong corroboration from all searching strategies.
- competitive results.

Indirect detection of Dark Matter with neutrino telescopes provides complementarity to other techniques due to different backgrounds

Many astrophysical signals can be interpreted as Dark Matter. We

IceCube has a lively program of Dark Matter searches, with very

Thank you for your attention

VLVNT 2018 - Dubna Russia

2nd GNN Workshop on Indirect Dark Matter Searches with Neutrino Telescopes

backups

CELESTIAL BODIES: NEUTRINOS FROM THE SUN

dark matter masses.

Seminar, Padua 2017

The mean free path of neutrinos of 5000 GeV is smaller than the Sun radius Indirect searches from the Sun are low-energy analysis even for the highest

CELESTIAL BODIES: ASTROPHYSICAL INPL

Effect of uncertainties in velocity distributions for Sun results:

A dark matter disc will have a significant (good) impact on the capture rate for the Sun/Earh

Different dark disc distributions

Seminar, Padua 2017

CELESTIAL BODIES: PARTICLE PHYSICS INPUT

$\sigma_{SI} \propto A^2$ Spin independent $\sigma_{SD} \propto (a_p \langle S_p \rangle + a_n \langle S_n \rangle) \frac{J+1}{J} \frac{S(|\vec{q}|)}{S(0)}$

The nucleon structure plays an essential role in calculating observables

But it seems to affect more σ^{SI} than σ^{SD}

Seminar, Padua 2017

Both direct detection and indirect detection (gravitational capture) depend on the WIMPnucleon cross-section.

R. Ruiz, C. de los Heros arXiv:1307.6668

WIMP Searches From the Sun

90% CL x-p cross-section (spin-independent)

Complementary to direct detection search efforts fills out WIMP picture by testing other properties Most stringent SD cross-section limit for most models

90% CL χ-p cross-section (spin-dependent)

Effective Areas Sun

VLVNT 2018 - Dubna Russia

EARTH WIMP Spin independent

ESDU 2018