Ultra-high energy cosmic rays: current status

M.S. Pshirkov^{1,2} ¹ SAI MSU,² INR RAS

VLVnT - 2018 Very Large Volume Neutrino Telescopes, Dubna, 03 Oct 2018

Overview

•

•

•

- Experiments
 - Spectrum
 - Composition
- . Anisotropy
- Future

UHECRs

UHECRs sources

From Bauleo&Martino,2009

UHECR: EAS

UHECR detection: fluorescence

UV-radiation from N nuclei excited by EAS

+ Allows to observe full development of the shower

+ We can retrieve energy of the primary CR from the UVyield

+ Position of the shower maximum X_{max} can be used to infer mass composition

+Stereo observations give reasonable angular accuracy

- Low duty cycle (~10%): lower statistics

UHECR detection: surface detectors

Charged particles reaching Earth's surface:

+High duty cycle (~100%)
+Well-defined exposure
- Large systematic uncertainties,
stronger dependence on hadronic models

- It is problematic to get energy from SD observation alone

UHECR experiments

UHECR experiments: Pierre Auger Observatory (PAO)

~1400 m a.s.l.

- Malargüe, Mendoza, Argentina
- 35°12′24″S, 69°18′57″W
- Since 2004
- Hybrid detector
- Surface detectors (SD)
 - SD-1500:
 - 1660 detectors @1.5 km,
 - $\sim 3000 \text{ km}^2$
 - SD-750 (lower threshold):
 - 49 @ 750 m, 24 km²
- Fluorescence detectors(FD)
 - 5 FD stations
 - 27 telescopes total

UHECR experiments: Telescope Array (TA)

- Delta, Utah, USA
- 39°17′49″N 112°54′31″W
- Since 2008
- Surface detectors (SD):
 - 507 detectors @ 1.2 km,
 - \sim 700 km²
- Fluorescence detectors(FD):
 - 3 FD stations
 - 38 telescopes total
 - TALE:
 - SD:400->600->1200 m separation
 - 103 SD, 70 km²
 - 10 extra FD telescopes

PAO detectors

from Verzi et al, 2017

TA detectors

• 3 m² scintillators x 2 layers

Exposures (1/2)

D. Ivanov for TA, ICRC 2015

I. Valino for PAO, ICRC 2015

Exposures (2/2)

M. Unger for PAO, ICRC 2017

SPECTRUM

Energy reconstruction

- TA as an example
 - **FD:** calculate shower energy from the observed signal and known UV yield.
 - **SD:** flux at r_{opt} (800 m) as an energy estimator
 - Correction for attenuation (depending on zenith angle)
- Calibrated with a set of hybrid events with known $E_{\rm FD}$

Energy reconstruction: uncertainties

Parameters of TA SD calibration			
Number of Hybrid events	551		
$E_{\rm SDMC}/E_{\rm FD}$	1.27		
Energy resolution	18.0 <log(<i>E)<18.5, 36%</log(<i>		
	18.5 <log(<i>E)<19.0, 29%</log(<i>		
	19.0 <log(<i>E), 19%</log(<i>		

Systematic uncertainties on the Energy scale				
	ТА	PAO		
Fluorescence yield	11%	3.6%		
Atmosphere	11%	3.4-6.2%		
FD calibration	10%	9.9%		
FD reconstruction	9%	6.5-5.6%		
Invisible energy	5%	3-1.5%		
Other contributions		5%		
Total	21%	14%		

from Verzi et al, 2017

Energy spectrum

Ankle (hardening) at several EeV Cut-off at several tens EeV

Energy spectrum: comparison (1/2)

TA/PAO WG 1801.01018

- Perfect agreement up to the cut-off well within experimental uncertainties
- Some discrepancy above the cut-off

Energy spectrum: comparison (2/2)

TALE mono spectrum (3.5 years of data)

TALE Energy spectrum (Monocular)

TA +TALE combined spectrum (1/2)

TA +TALE combined spectrum (2/2)

Origin of the cut-off: propagation?

K. Kampert 1404.6515

Origin of the cut-off: maximal energy at the sources?

• Knowledge of the mass composition will help to disentangle!

MASS COMPOSITION

Mass composition estimation

- Mostly from fluorescent detectors: X_{max} .
- $< X_{max} >$ increases with E CR 'penetrates' deeper.
- Shower for nuclei with mass number *A* is a superposition of A proton showers with initial energy E/A, i.e. showers are *shallower* for heavier nuclei.
- Also X max tends to fluctuate less from shower to shower in this case, $\sigma(X_{\text{max}})$ decreases.
- Advanced analyses now use full Xmax distribution, not only first momenta.

Mass composition: Auger

- UHECR mass reaches the minimum around several EeV.
- Afterwards composition is becoming heavier
- Slight discrepancy between X_{max} and $\sigma(X_{max})$ results.
- Two highest bins (from the SD risetime method) are different -- do the composition becomes lighter again?

Mass composition: TA (1/3)

Data: 27 May 2008 - 29 Nov. 2016

Ap. J., 858, 76(2018) arXiv: 1801.09784

Mass composition: TA (2/3)

Ap. J. 858, 76 (2018) arXiv:1801.09784

- Data vs MC
- Compare both X_{max} and σ_{Xmax}
- Data rectangles, MC
- contours
- Single primary, 5000 MCs
- At low energies data with a 10-20 g/cm² shifts looks like protons

Mass composition: TA (3/3)

Ap. J. 858, 76 (2018) arXiv:1801.09784

At higher energies primaries seem to be heavier than protons Small statistics

(e) $19.4 \le \log_{10}(E/eV) < 19.9$

Mass composition: fitting the X_{max} disribution

- The distribution is fitted by the mix of 4 elementary groups: p, Ne, N, Fe.
- Increase in <A> comes from the change of dominating group.
- No Fe at the highest energies (yet)

The mix and the spectrum

arXiv:1708.06592

- The best mix represents the spectrum pretty closely
- CRs below ~4-5 EeV must be galactic
- What about last points?

Mass composition: TA/PAO comparison

average difference: $\langle \Delta \rangle = (2.9 \pm 2.7 \text{ (stat.)} \pm 18 \text{ (syst.)}) \text{ g/cm}^2$

- Analysis methods are different and that makes impossible a simple $\langle X_{max} \rangle$ comparison
- Solution: take 'Auger mix', run it through the TA pipeline
- Result: TA observations are not incompatible with PA mix.
- The same results with full distributions as well.

Mass composition future: SD analysis

TA. 1808.03680

- Low FD statistics makes studies at E>10^{19.6} eV virtually impossible
- We need to use SD data
- ML. Multivariate analysis (BDT) with 14 observables allowed to move further up to 10²⁰ eV.
- Composition is light at the highest energy, 'He'-like.

UHECR v's and γ 's

- UHECR detectors are VLVNTs indeed
- No neutrino (or photon) candidates were observed in PA or TA data
- Absence of this cosmogenic particles has already put limits on strong evolution models/proton model -complimentarity SHDM is strongly disfavoured

ANISOTROPY

Anisotropy: large scale (1/3)

Anisotropy: large scale (2/3)

Table 1. First harmonic in right ascension. Data are from the Rayleigh analysis of the first harmonic in right ascension for the two energy bins.

Energy	Number	Fourier	Fourier	Amplitude	Phase	Probability
(EeV)	of events	coefficient a_{α}	coefficient b_{α}	rα	φ _α (°)	P (≥ r _α)
4 to 8	81,701	0.001 ± 0.005	0.005 ± 0.005	0.005 +0.006	80 ± 60	0.60
≥8	32,187	-0.008 ± 0.008	0.046 ± 0.008	0.047 +0.008 -0.007	100 ± 10	2.6 × 10 ⁻⁸

Table 2. Three-dimensional dipole reconstruction. Directions of dipole components are shown in equatorial coordinates.

Energy (EeV)	Dipole component d _z	Dipole component d_{\perp}	Dipole amplitude d	Dipole declination δ _d (°)	Dipole right ascension α _d (°)
4 to 8	-0.024 ± 0.009	$0.006\substack{+0.007\\-0.003}$	$0.025\substack{+0.010\\-0.007}$	-75^{+17}_{-8}	80 ± 60
≥8	-0.026 ± 0.015	0.060+0.011	$0.065^{+0.013}_{-0.009}$	-24_12	100 ± 10

Auger collaboration, Sci 357 (2017) 1266

Anisotropy: large scale (3/3)

Auger collaboration, Sci 357 (2017) 1266

- Local anisotropy is caused by the LSS
- Good agreement with the 2MRS data + deflections from the GMF

Anisotropy: TA medium scale (1/5)

KS p-value 0.01 data/iso for E>57 EeV in SG lat All other distros (*E*, longitude) are compatible

Anisotropy: TA medium scale (2/5)

arXiv:1707.04967

Region	C_o	α_1	$\log_{10}(E_b/EeV)$	α_2
All	$2.14^{+0.34}_{-0.30}\times10^{+4}$	$-1.775\substack{+0.053\\-0.053}$	$1.778\substack{+0.040\\-0.068}$	$-3.91\substack{+0.64 \\ -0.66}$
On source	$(1.1128 \times 10^{+4})$	(-1.775)	$1.832\substack{+0.069\\-0.041}$	$-3.91\substack{+0.70 \\ -1.30}$
Off source	$(1.0286 \times 10^{+4})$	(-1.775)	$1.668\substack{+0.052\\-0.053}$	$-3.86\substack{+0.58\\-0.82}$

TABLE I. Parameters of the best fit broken power law in the SGP case.

In the SGP region break is higher @ 3.2σ

•

Anisotropy: TA medium scale (3/5)

Total events: 72 Observed: 19 Expected : 4.5

Best circle center: RA=146.7°, Dec=+43.2° Best circle radius: 20° Local significance : 5 σ Global significance : 3 σ

5 years

Anisotropy: TA medium scale (4/5)

Total events: 143 Observed: 34 Expected : 13.5 Best circle center: RA=144.3°, Dec=+40.3° Best circle radius: 25° Local significance : 5σ Global significance : 3σ

9 years

Anisotropy: TA medium scale (5/5)

Anisotropy: PA SBG correlation

Model Excess Map - Starburst galaxies - E > 39 EeV

Auger collaboration, ApJL 853:L29 (2018)

- Model: flux proportional to $L_{1.4GHz}$
- Add uniform component (arbitrary fraction)
- Smear with Gaussian (arbitrary radius)
- Maximum Likelihood -obtain TS from the observed data
- !No deflections in GMF
- 4 σ for SBG model with source fraction 9.7% and smearing radius 12.9°

Anisotropy: TA SBG correlation

- Model: the same as the Auger model with the fixed source fraction 9.7% and smearing radius 12.9°
- "The result of this test was inconclusive, being compatible both with isotropy to within 1.2 σ and with the Auger result to within 1.3 σ ."

FUTURE

Future: Auger Prime

- Major upgrades
- Add scintillator on top of each WCD -- different sensititivity allows to disentangle muon and electrons/positrons/gamma
- Bury large scintillators under detectors in the infill array (SD-750) . AMIGA will study muon component.
- Variable HV -- observe under 'full moon' -- increase FD statistics.
- Aim: Mass composition studies on event-by event basis

Future:TAx4

TAx4 now under construction: 500 new detectors with 2.08 km spacing, 2 new FD stations

Will double TA data sample by mid-2021

Future: UHECR @ radio. AERA

- Auger Engineering Radio
 Array
- 153 stations covering 17 km²
- Self-trigger, triggers from other detectors
- 100% duty cycle
- Especially useful for horizontal (neutrino) showers
- Energy calibration

Aab et al., PRL2016

THANK YOU!

Backup

Backup

TA: hybrid event

• E=1.3x10²⁰ eV

¹ TA SD spectrum (9 years of data)

7