







# ANTARES-IceCube combined search for neutrino point-sources in the Southern Hemisphere

#### The ANTARES and IceCube detectors



- ~2500 m deep in the Mediterranean Sea
- 12 lines, 25 storeys, 885 PMTs

#### Complementarity for the Southern sky:

- Size
- Geographical location
- Atmospheric muon background



- Largest neutrino telescope (1 km³)
- ~2500 m deep in Antartica
- 86 strings with 60 DOMs
- 17 m between DOMs, 125 m between strings

#### Data samples

| Sample  | Livetime (days) | Events |
|---------|-----------------|--------|
| tracks  | 2415            | 5807   |
| showers | 2415            | 102    |

ANTARES 9 years

Through-going tracks

| Sample    | Livetime (days) | Events |
|-----------|-----------------|--------|
| IC40      | 376             | 22779  |
| IC59      | 348             | 64257  |
| IC79      | 316             | 44771  |
| IC86      | 333             | 7493 I |
| 2012-2015 | 1058            | 119231 |

IceCube 7 years

All these samples have been used for point-source analyses in their respective collaborations

### Data samples: Median Angular Resolution



#### Data samples: Effective area



### Data samples: Differential Discovery Flux



#### Data samples: Relative Contribution





Relative fraction of signal events for different energy source spectra  $\frac{dN}{dE} \propto E^{-\gamma}$ 

#### Search method: Likelihood

Unbinned likelihood method:

$$L(n_S, \gamma) = \prod_{j} \prod_{i \in j} \left[ \frac{n_S^j}{N^j} S_i^j(\Delta \Psi, \sigma, E, \gamma) + \left(1 - \frac{n_S^j}{N^j}\right) B_i^j(\delta, \sigma, E) \right] \quad \text{i: event in sample } J$$

 $n_s$ : number of signal events

 $\gamma$ : spectral index

Signal PDF  $S_i^J$  depends on:

 $\Delta \Psi$ : angular distance from source

 $\sigma$ : angular error estimate

E: energy

γ: spectral index

Background PDF  $B_i^j$  depends on:

 $\delta$ : declination

 $\sigma$ : angular error estimate

E: energy

- Source hypothesis: unbroken E-Y energy spectrum
- Same PDFs as those used in the respective latest point-source analyses
- Test statistics: likelihood ratio of null hypothesis  $L(n_S=0)$  and best fit  $L(\hat{n}_S,\hat{\gamma})$ :

$$TS = -2\log\frac{L(n_S = 0)}{L(\hat{n}_S, \hat{\gamma})}$$

#### Search method: Strategies (1/2)

- Full Southern-sky search
  - Evaluate the whole Southern sky
  - Free parameters:  $n_S$ ,  $\gamma$ ,  $\delta_S$ ,  $\alpha_S$
  - Also for extended sources ( $\sigma_s = 0.5^{\circ}$ , 1.0°, 2.0°)
- Candidate list search
  - Evaluate the position of a pre-selected list of neutrino source candidates
  - 57 Southern sky candidates considered in the latest ANTARES point source analysis:
    - > Galactic and extra-Galactic sources in TeVCat selected on the basis of flux\*visibility criteria

### Search method: Strategies (2/2)

- Galactic Center region search
  - Full-sky search method applied to a restricted region around the GC (ellipse, 15° semi-axis in galactic latitude, 20° semi-axis in galactic longitude)
- Sagittarius A\* location
  - Tested as an extended source by assuming a Gaussian emission profile of various widths [0.5°, 5.0°]
- o RX J1713.7-3946 location
  - Tested as an extended source with disk emission profile of 0.6° radius

## Results: Combined 5σ discovery flux





5σ discovery flux for different energy source spectra

#### Results: Combined 90% C.L. sensitivity





90% C.L. sensitivity for different energy source spectra

#### Conclusions

- The complementarity of the ANTARES and IceCube detectors with respect to the Southern sky sources allows for a gain in sensitivity by combining the data of both experiments.
- The level of improvement varies depending on the source declination and assumed source spectra.
- A gain in sensitivity to E<sup>-2</sup> point-sources close to the GC of almost a factor 2 is obtained.
- Work in progress, updates soon!