

Cherenkov Telescope Ring

An Idea for World-Wide Monitoring of the VHE Sky

Dominik Elsässer , Wolfgang Rhode, <u>Tim Ruhe,</u>
M. Nöthe, K. Brügge
TU Dortmund

Where we are

 Several highly successful VHE facilities (VERITAS, H.E.S.S., MAGIC, FACT, HAWC)

CTA prototypes progressing well

Lots of interesting sources to study and physics problems to solve

The VHE Sky in 2018: A VHE success story

Why is there even a need to act now?

• First full CTA science operations horizon still beyond typical university education timescales. Need to conserve expertise and provide continuity in education!

 Lingering hard physics questions still unanswered: Acceleration mechanisms, CR luminosity

 Multi – messenger astronomy picking up tremendous speed: Gravitational waves & IceCube neutrinos

Strong motivation for near-instantaneous observation capability

FACT: A highly successful technology & methods pioneer

FACT achievements towards future instruments

 Suitability of SiPM – cameras for dense monitoring of sources even under difficult conditions

- Demonstrated reliability, robotic operations!
- Public data set: https://fact-project.org/data/
- High performance public analysis software developed by the Dortmund group:
 - https://github.com/fact-project/fact-tools

TXS 0506: Harbinger of the neutrino point – source era

What can we do NOW to preserve & greatly expand VHE monitoring & follow — up capabilities worldwide?

Proposal

Three pillars:

- A) Preserve, maintain and upgrade existing facilities well into the CTA era
- B) Build upon the expertise gained from prototypes & precursor experiments (FACT, but also the CTA prototypes)
- C) Form group of international partners to complete a ring of IACT facilities covering a wide range of longitudes and latitudes:
- Cherenkov Telescope Ring

Goal

Achieve few percent Crab flux sensitivity above ~150GeV per site

 This will open up the Universe out to z~1, including amongst others the VHE - detected FSRQ population

 Baseline telescope can be "MST - like", meaning ~90sqm mirror area, modular camera with state-of-the-art readout and SiPM sensors.

Projected price tag per site 350k – 500k Euros

Key Point: CTR is not meant to compete with CTA, but to "bridge the gap" in a temporal sense, pertaining equally to construction timescales and observational coverage.

→ CTA will provide deep coverage and wide energy range, while CTR can complement time series

→ CTR can provide alerts to CTA

Continuous monitoring

Summary

- Strong physics motivation for expanded world wide monitoring capability
- Can be achieved with realistic efforts now by building upon existing facilities & expertise from pioneering instruments (CTA, FACT, et al.)
- Additional motivation: technological and educational continuity into the CTA era
- Lake Baikal site, potentially in connection with TeV array, would add substantially to the science capabilities!