TAIGA: results and perspectives

L.Kuzmichev (SINP MSU) on behalf of the TAIGA Collaboration

VLVnT-2018, 04.10 2018

TAIGA (Tunka Advanced Instrument for cosmic rays and Gamma - Astronomy)

Tunka Valley, Republic Buryatia- 50 km to westfrom Lake Baikal.

The main aim of TAIGA project:

Study of very high energy (>30 TeV) gamma rays from Galactic accelerators with large area array (~10 km²)

51° 48' 35" N 103° 04' 02" E 675 m a.s.l.

TAIGA - collaboration

Germany

Hamburg University(Hamburg) DESY (Zeuthen) MPI (Munich)

Italy

Torino University (Torino) **Romania** ISS (Bucharest)

Russia

MSU (SINP) (Moscow) ISU (API) (Irkutsk) INR RAS (Moscow) JINR (Dubna) MEPhI (Moscow) IZMIRAN (Moscow) BINR SB RAS (Novosibirsk) NSU (Novosibirsk) ASU (Barnaul)

Content of report

- 1. High energy gamma-ray astronomy and TAIGA project
- 2. TAIGA current status
- 3. The experiment in future

1.High-energy gamma-astronomy and the TAIGA project

The TAIGA experiment - a hybrid detector for very High energy gamma-ray astronomy and cosmic ray physics in the Tunka valley

The main idea: A cost effective approach for construction of large area installation is a joint operation of wide-field-of-view timing Cherenkov detectors (the non-imaging technique) with a few small-size imaging Air Cherenkov Telescopes.

TAIGA : Imaging + non-imaging techniques

TAIGA - HiSCORE: core position, direction and energy Gamma/ hadron separation - TAIGA-IACT (image form, monoscopic operation)

Scientific Program

- 1.Study of high-energy edge of spectrum of galactic gamma-ray sources. Search for Pevatrons
- 2. Monitoring of the bright extragalactic sources
- 3.Apply the new hybrid approach (joint operation of IACTs and wide-angle timing array) for study of cosmic rays mass composition in the "knee" region (10¹⁴ -10¹⁶ eV)
- 4. Fundamental physics (photon-axion oscillation, indications of Lorentz invariance violation etc).

Wide angle station

Event example

Energy determination:

 $E = C \cdot Q(200)^{094}$

Common observation of ISS LIDAR by HiSCORE and optical telescope MASTER

Absolute pointing of HiSCORE $~~\alpha_{miss}~~\sim 0.1~^\circ$

Camera : 560 PMTs (XP 1911) with 15 mm useful diameter of photocathode Winston cone: 30 mm input size, 15 mm output size aperture single pixel = 0.36° FOV diameter ~ 9.6°

Energy threshold ~1.5 TeV

Camera of the TAIGA-IACT

2. TAIGA current status

Season 2017-2018: layout parameters

were included in analysis)

S~0.25 m²

IACT:

S of mirrors	8.5 m ²
Focus	4.75 m
FOV	9.5°

HiSCORE stations: 43 stations

"Tilting" to the South at 25°

Sub-ns array-wide time synchronization

4 PMTs of 8" size with Winston cones (light collection 0.5 m²) FoV ~0.6 sr

CR energy spectrum 2018

Monitoring of "Test" gamma-ray sources (CraB, Mrk-421) by the IACT in the stand-alone mode

Expectated observation time with 50% good weather time:

- Crab 130 hr
- Mrk-421 120 hr
- Tycho 190 hr

Due to abnormally bad weather during this season and a number of technical problems, the monitoring time of the "test" gamma sources (Crab, Mrk-421) was only about 25 hours.

The first results will be presented after 50 hours of observation for the low-energy region and after 100 hours of observation for hybrid events.

Statistics of Hybrid events

Selection events from gamma-rays by Hillas parameters

$$\mathbf{Q} = \mathbf{K}\mathbf{1} / \sqrt{\mathbf{K}\mathbf{2}} - \mathbf{Q}$$
-factor

IACT and HiSCORE joint events

width of images : Experiment & MC

MC simulations after tuning successfully describes Hillas parameters for different intervals of Size and distance

FIRST EXAMPLE OF HYBRID "GAMMA-LIKE" EVENT

IACT data

Gamma-like events

Ψ – the angle (the direction at the Crab, the shower direction by HiSCORE)

Expected number with energy Eg>50 TeV ~

5-10 events

3. The future of experiment

Plan for 2018-19

For 100 hours

3.10⁵ hybrid events (CR mass composition)

50-100 hybrid events from Crab (E ≥.40 TeV)

Mirrors and camera In April 2019

Integral sensitivity to local sources

Long term plan for TAIGA

on the 10 km² area, energy threshold 30 TeV

 $(10 \text{ m}^2 \text{ mirrors}).$

with total area $3.0 \ 10^3 \ m^2$.

Conclusion

- 1 TAIGA 10 km² hybrid array 1000 wide-angle stations and 15-20 IACTs). The sensitivity for local sources in the energy range 30 -200 TeV is expected be – 10⁻¹³ TeV cm⁻² sec⁻¹ (for 500 h observation)
- 2. Deployment of the full scale TAIGA prototype -120 wide-angle stations and three IACTs is planned for 2019.
 - The expected sensitivity for 300 hours source observation with this array in the range 30 200 TeV is about 2.5 10⁻¹³ TeV/(cm² sec), extending the energy range of existing and planned experiments to the ultra-high energy range.
- 3. The first commission seasons were successful:
 - found out and removed bugs in hardware and software
 - CR energy spectrum below the knee
 - Lidar on board ISS light calibration source for TAIGA
 - First results from joint operation of HiSCORE and IACT

Thank you

Integral spectra by size for the IACT events and joint events

