

# The multi-PMT optical module for the IceCube-Upgrade

Alexander Kappes for the IceCube Collaboration VLVnT Workshop Dubna, 2–4. Oct. 2018

living.knowledge





#### Institute for Nuclear Physics













Alexander Kappes, VLVnT Workshop, Dubna, 2–4.10.2018









# Challenges for optical modules at the South Pole

- Have to withstand up to 700 bar pressure during freeze-in
- Have to operate at -40°C
- Tight space constraints inside module (outer diameter limited to < 14'' by max. bore hole diameter)
- Tight power constraints
- Limited data bandwidth (copper cables for data transfer)
- High reliability over >10 years (no repairs possible)











#### Features of multi-PMT optical module design

- Large photocathode area
- Uniform solid angle coverage
- Local coincidences, e.g. for background suppression
- Information on photon arrival direction
- Exact photon counting if different PMTs are hit







- Two spherical half vessels with 14" diameter and 27.5mm cylindrical extension at equator (developed with and manufactured by Nautilus) - Glass type: borosilicate glass (total weight 13 kg)
- - Glass thickness: 14 mm

#### • Pressure tests successfully concluded in July (included semi-realistic



Alexander Kappes, VLVnT Workshop, Dubna, 2–4.10.2018

## **Pressure vessel**



deployment pressure cycle)

 Deformation is reversible and follows external pressure linearly



- Maximal deformation agrees with FE simulations within 2%
- Thorough inspections after pressure tests have revealed no damage to glass or chamfer









Currently 3d printed from polyamide via laser sintering

- Advantages
  - allows realization of complex structures
  - modifications possible on short timescales
- Disadvantages
  - expensive in series production (~400 EUR per half)
  - long production time (~2 days including cooling)

Alternative: Injection molding

- Advantages
  - Low price for large quantities
  - Much higher production capacity
- Disadvantages
  - half-sphere structure and PMT cups have to be produced separately and assembled afterwards
  - price for tools high (several 10 kEUR)

## **PMT support structure**











- Gel fills gap between PMT support structure / PMTs and pressure vessel
- Transmission properties vary significantly between brands



Alexander Kappes, VLVnT Workshop, Dubna, 2–4.10.2018







- Initially Wacker SilGel 612  $\rightarrow$  crystallizes at -45°C into a hard and opaque state
- Now QGel 900 from QSI (used in IceCube DOMs)









Will likely operate with negative HV at photocathode

For demonstrator development: Hamamatsu R12199-02 HA MOD

- Modified version which is 5 mm shorter and has HA coating
- HA coating puts glass outside photocathode area on HV thereby reducing dark-noise rate due to electrons hitting glas from inside
- PMT characteristics
  - diameter 80 mm (cathode >72 mm)
  - length 93mm
  - gain ~3×10<sup>6</sup> @ ~900 V
  - TTS (FWHM) =  $\sim 3.5$  ns
  - typical quantum efficiency curve (25% @ 400 nm)

Alternative PMTs under investigation

# Photomultiplier



0.30

0.25

0.20

0.15

Onantum 0.10

0.05

efficiency

#### Hamamatsu R12199-02 HA















#### • Type: HZC XP82B2F

• Characteristics (for details see talk Lew Classen)

|                                             | SN80187         |
|---------------------------------------------|-----------------|
| Gain slope (log/log)                        | $6.99 \pm 0.06$ |
| Supply voltage @ gain 1x10 <sup>7</sup> [V] | 1147 ± 96       |
| Pre-pulses [%]                              | 0.8             |
| Delayed pulses [%]                          | 1.9             |
| Late after-pulses [%]                       | _               |
| Transit time spread (FWHM) [ns]             | 4.3             |
| Uncorrelated noise (20°C) [Hz]              | 391 ± 2         |
| Uncorrelated noise (-30°C) [Hz] *           | 18 ± 1          |
|                                             |                 |

\* Noise ( $-30^{\circ}$ C) with 1 µs window:  $\sim 70$  Hz

• Characteristics comparable to Hamamatsu R12199-02 with ~25% increased photocathode area  $\rightarrow$  appears to be an attractive alternative

# **Alternative PMTs: 3.5" PMTs from HZC**



| Daan van Eijk (Madison) |                 |  |
|-------------------------|-----------------|--|
| SN80171                 | SN80169         |  |
| 6.55 ± 0.09             | $6.60 \pm 0.07$ |  |
| 1252 ± 171              | 1424 ± 158      |  |
| 0.9                     | 0.8             |  |
| 1.8                     | 1.4             |  |
| _                       | -               |  |
| 4.2                     | 3.2             |  |
| 417 ± 3                 | $1828 \pm 10$   |  |
| 21 ± 1                  | 21 ± 1          |  |







- Though mushroom diameter of HZC 3.5" is significantly larger, overall length and stem diameter are quite similar to Ham 3"
  - Mushroom diameter HZC: 87.5 mm HA: 80.5 mm
  - Overall length HZC: 94.5 mm HA: 93.0 mm
  - Stem diameter HZC: 53.2 mm HA: 52.2 mm
- CAD drawings suggest that 24 3.5" PMTs fit into a mDOM
- Plan to build 2nd demonstrator with HZC PMTs

# **Alternative PMTs: 3.5" PMTs from HZC**









- Reflector increases photon-collection area and directionality
- Laser-cut from coated aluminum sheet (Almeco V95)
- Bent by simple hand-held device



Alexander Kappes, VLVnT Workshop, Dubna, 2–4.10.2018







Reflector with PMT in test support structure



#### Bending tool



Bended reflector









# **Electronics**





# General requirements /constraints for readout and HV

- Sampling of semi-complex PMT waveforms
- Low power consumption (total  $\leq 150 \text{ mW per PMT}$ )
- Low sensitivity to interference signals (cross talk)
- Low footprint if placed on PMT base
- High reliability

#### **Remark:** modular design of common electronics components (communication, timing calibration etc.) with well-defined interfaces → used in all module designs together with module-specific components













#### **Baseline readout scheme: "slow" ADC design**



#### Features

- Individual readout of all 24 PMTs
- For each PMT
  - sampling of signal with "slow" ADC (ADC3424 Quad-Channel, 12-bit, 125 MSPS ADC)
  - fast sampling of comparator output (1250 MHz) for precise leading-edge time
- Dead-time free
- Low power consumption: 98 mW / Ch



A. Kretzschmann (DESY)





# Fallback: 4-comparator (ToT) design

#### **Features**

- 24 channels
- 4 programmable thresholds per PMT, sampled with 1200 (600) MS/s
- analog sum of all PMT signals sampled with 200 MS/s ADC
- dead-time free

Prototype exists (will be used for mDOM demonstrator)

| PM | 1 signal |
|----|----------|





Alexander Kappes, VLVnT Workshop, Dubna, 2–4.10.2018







## **Summary and outlook**

- A multi-PMT optical module is being developed for deployment in the deep ice at the South Pole for future IceCube extensions (IceCube-Upgrade, IceCube-Gen2)
- Harsh environmental conditions and available infrastructure pose stringent limits on module parameters like size, power consumption and reliability
- Mechanical design well advanced  $\rightarrow$  optimizations towards final design
- Several options for readout have been under evaluation  $\rightarrow$  selected baseline design: sampling of each PMT channel with "slow" (125 MHz) ADC + precision leading-edge time

mDOM timeline for IC-Upgrade end of 2018: demonstrator end of 2019: final design

SPONSORED BY THE



Federal Ministry of Education and Research



- - ▶ 2020—2021: production
    - 2022/23: deployment



