

Изучение упругих *NN*-взаимодействий с использованием поляризованных пучков и мишени на ANKE-COSY

С. Дымов (коллаборация ANKE)

Outline

Motivation for elementary NN studies at ANKE-COSY

COSY synchrotron and ANKE spectrometer

Experimental program:

Charge-exchange deuteron breakup: б, A_y, A_{yy}, C_{yy}, C_{xx}

- -> Small angle pp-elastic: results for A_y and δ
- Small angle pn, pd-elastic: new results for A

✓ Outlook

MOTIVATION: Nucleon-Nucleon (NN) interaction

Understand nuclear force in GeV region

 \rightarrow pp and np-amplitudes

→ Phase Shift Analysis*

<u>ANKE</u>

→ Spin observables

- Small angle pp-elastic: A_v and σ
- Charge-exchange deuteron breakup: б, A_y , A_{yy} , C_{yy} , C_{xx}
- → Small angle pn, pd-elastic: A_{v}

*SAID Group from Washington University: R.A. Arndt et al. Phys. Rev. C 62 (2000) 034005; R.A. Arndt et al. Phys. Rev. C 76 (2007) 025209

INNING

MOTIVATION: Where are we in pp elastic?

- Wealth of data $(35^{\circ} < \theta_{p} < 90^{\circ})$ 0.5<T_n≤2.5 GeV
- EDDA's large impact on PSA: significantly reduced ambiguities in phase shifts (I=1) 180 9 [degrees CM]

PRL 90, 142301 (2003) PRL 85, 1819 (2000)

No experimental data at smaller angles ($\theta_{p} < 35^{\circ}$) above $T_p = 1.0 \text{ GeV}$

Source: http://nn-online.org/NN

MOTIVATION: Where are we in pn?

R. Arndt: Gross misconception within the community that np amplitudes are known up to a couple of GeV. np data above 800 MeV is a DESERT for experimentalists."

180

160

140

120

np charge-exchange

9 [degree CM]

Introduction: COSY storage ring

COSY (COoler SYnchrotron) at Jülich (Germany)

- Hadronic probes: protons, deuterons
- Polarization: beam and targets

- Energy range:
 - 0.045 2.8 GeV (p)
 - 0.023 2.3 GeV (d)
- Max. momentum ~ 3.7 GeV/c
- Energy variation (ramping mode)
- Electron and stochastic cooling
- Internal and external beams
- High polarization (p,d)
- Spin manipulation

Apparatus: ANKE spectrometer

S. Barsov et al., NIM A 462, 364 (1997)

- Ideal for small angle elastic scattering studies
- Cluster jet target (H₂, D2) or polarised gas target (H, D)
- Silicon Tracking Telescope (STT): (5° < θ^p_{cm} < 30°):
 - Low energy proton (spectator) detection
- Forward detector built by Dubna group

I. Lehmann et al., NIM A 530 (2004) 275

С. Дымов

2.0

25

30

pn scattering via charge exchange d-breakup (1)

Impulse approximation: connection to the elementary np amplitudes

np charge-exchange amplitudes in cm:

$$f_{np} = \alpha + i\gamma(\sigma_{n} + \sigma_{p}) \cdot n + \beta(\sigma_{n} \cdot n)(\sigma_{p} \cdot n) + \delta(\sigma_{n} \cdot m)(\sigma_{p} \cdot m) + \varepsilon(\sigma_{n} \cdot l)(\sigma_{p} \cdot l)$$

with basis vectors in terms of initial and final cm momenta p and p':

$$\mathbf{n} = \frac{\mathbf{p} \times \mathbf{p}'}{|\mathbf{p} \times \mathbf{p}'|}, \quad \mathbf{m} = \frac{\mathbf{p}' - \mathbf{p}}{|\mathbf{p}' - \mathbf{p}|}, \quad \mathbf{l} = \frac{\mathbf{p}' + \mathbf{p}}{|\mathbf{p}' + \mathbf{p}|}$$

D.V.Bugg & C.W., Nucl.Phys.A467 (1987) 575

Proof of principle at 585 MeV/A

$$\vec{dp} \rightarrow \{pp\}_{s}n \ (E_{pp} < 3 MeV)$$

- Methodology is valid at $T_N = 585 \text{ MeV}$
- Application to higher energies $T_N = 0.8, 0.9, 1.135 \text{ GeV}$

Input for impulse approximation predictions: np charge-exchange amplitudes from current SAID solution at $T_N = 585 \text{ MeV}$

 $dp \rightarrow \{pp\}_{s} n: d\sigma/dq, A_{xx}, A_{yy}$

D.Mchedlishvili et al. EPJA, 49, 49 (2013)

 $d\vec{p} \rightarrow \{pp\}_{s} n: A_{y}^{p}, C_{y,y}, C_{x,x}$

 E_{pp} < 3 MeV

D. Mchedlishvili et al. EPJA, 49, 49 (2013)

High statistics $d\vec{p} \rightarrow \{pp\}_{s}n$ **data at** T_{N} =363 MeV

By-product result of a $np \rightarrow \{pp\}_s \pi^-$ study

Impulse approximation model calculations by *C. Wilkin* based on the SAID pn charge-exchange amplitudes (SP07)

S.Dymov et al., PLB 744, 391 (2015)

NN scattering: Extension of np-program

pp-elastic cross section: Target Density

$$n_T = \left(\frac{1+\gamma}{\gamma}\right) \frac{1}{\eta} \frac{1}{(dE/dx)m} \frac{T_0}{f_0^2} \frac{df}{dt}$$

 η parameter is connected to the momentum compaction factor a:

Mean revolution frequency shift is connected to $\Delta B/B$ change in the bending magnets via momentum compaction factor α :

pp-elastic cross section: Results

Analyzing power in pp- and pn-elastic scattering: back-to-back measurements

Polarized proton beam:

- $T_{p} = 0.796 \text{ GeV}$ (compare with existing experimental data)
- T_p =1.6, 1.8, 1.965, 2.157, 2.368 GeV (new)
- Same beam settings for pp- and pn-experiments

Beam polalization:

 $P_v \sim 50\%$, spin flipped every cycle (5 min)

Targets:

Unpolarized H_2 , D_2 cluster jet, $d \sim 5.10^{14}$ cm⁻²

Beam polarimetry:

EDDA detector, last 20 sec of each cycle

Triggers:

- Self-triggering STT Layer 2
- FD*STT coincidence

Beam polarization measurement by EDDA

- Carbon fibre target (pC)
- Known effective pC analyzing power
- Scintillator semi-rings (φ asymmetry)

Beam Energy T_kin [MeV]	Av. Polarisation P [%]	Statistical Error P_er [%]
796	55.4	0.8
1600	50.4	0.3
1800	- 50.8	1.1
1965	- 42.9	0.8
2157	- 50.1	1.0
2368	43.5	1.5

- LEP: P~90% at injection
- EDDA: P~50% at experiment energy
- ~1% statistic and 3% systematic error

Analyzing power in pp-elastic: Results

SAID (partial wave analysis) old solution (SP07) SAID new solution (AD14)

- Agreement with the existing data at 0.8 GeV
- New data at five energies

Analyzing power in pd elastic: New results

Left-right symmetry of STT - Cross ratio method Systematic errors suppressed in first order

$$\varepsilon = \frac{L-R}{L+R} = PA$$
 $L = \sqrt{L_1 L_2} = \sqrt{L \uparrow R \downarrow}$ $R = \sqrt{R_1 R_2} = \sqrt{L \downarrow R \uparrow}$

Reduced by

a factor of 2

Deuteron in STT (STT trigger)

Angle defined from deuteron energy $\sigma(\Theta) < 0.2^{\circ}, \sigma(E_{d}) < 2\%$

Analyzing power in pn quasi-free elastic: (1) New results

- Fast proton in FD in coincidence with spectator proton in STT
- No detector Left-Right symmetry cross ratio not applicable
- Must define ratio of luminosity with beam spin up and down: use ratio of deuterons from pd-elastic taken with STT-trigger $(L_d^{\uparrow} \cdot R)$
 - $(L_d^{\uparrow} \cdot R_d^{\uparrow})/(L_d^{\downarrow} \cdot R_d^{\downarrow})$
- Very low and unpolarized background in Mx spectra, except 800 MeV, where deuterons from pd \rightarrow d π^0 +p_{spec} in FD suppressed by dE/dX
- Only the right STT was used to suppress quasi-free pp-elastic

and pp-quasi elastic counts. Left STT in coincidence with FD

Analyzing power in pn quasi-free elastic (2): Results at 800 MeV

Analyzing power in pn quasi-free elastic (3): Results at 1600 and 2200 MeV

Заключение

- вклад ANKE в базу данных по NN-рассеянию в каналах:
 - Зарядово-обменное pn- рассеяние на углы ~ 180°
 - → pp-, pn- и pd-рассеяние на малые углы
- Данные ANKE согласуются:
 - С данными других экспериментов
 - С результатами SAID PSA SP07 в области его применимости
 - С результатами SAID SAID PSA, модифицированного с учётом данных WASA в области резонанса d*

• Данные ANKE позволяют:

- Определить амплитуды зарядово-обменного pn-рассеяния
- Расширить энергетический диапазон анализа парциальных сдвигов

pn scattering via charge exchange d-breakup (2)

$dp \rightarrow \{pp\}_{s}n$: Spin observables

Unpolarised intensity depends only upon spin-flip amplitudes:

 $I = \left|\beta\right|^{2} + \left|\gamma\right|^{2} + \left|\varepsilon\right|^{2} + \left|\delta\right|^{2} R^{2}$

Define a ratio of form factors by

$$R = S^{+}(k, \frac{1}{2}q) / S^{-}(k, \frac{1}{2}q)$$

Terms can be separated by measuring with polarized beams/targets:

Unpolarised
cross section
$$\frac{d^{4}\sigma}{dtd^{3}k} = \frac{1}{3}I\left[S^{-}(k,\frac{1}{2}q)\right]^{2}$$

$$d \text{ and } p \text{ vector analysing powers}$$

$$IA_{y}^{p} = -2\Im(\beta^{*}y)$$

$$d \text{ tensor analysing powers}$$

$$IA_{xx} = |\beta|^{2} + |y|^{2} + |\varepsilon|^{2} - 2|\delta|^{2}R^{2}$$

$$IA_{yy} = |\delta|^{2}R^{2} + |\varepsilon|^{2} - 2|\beta|^{2} - 2|y|^{2}$$

$$d \text{ tensor analysing powers}$$

$$IC_{y,y} = -2\Re(\varepsilon^{*}\delta)R$$

$$IC_{x,x} = -2\Re(\varepsilon^{*}\beta)$$

$$d \text{ correlation}$$

$$IC_{yy,y} = -2A_{y}^{p}$$

$$D.V.Bugg \& C.W., Nucl. Phys. A467 (1987) 575$$

Charge exchange d-breakup at ANKE

Vector and tensor polarized deuteron beams: Proof of principle at 585 MeV/A:

Cross section	D. Chiladze et al. EPJA,40, 23 (2009)	
Tensor analyzing powers	D. Chiladze et al. PLB 637, 170 (2006)	
Measurements up to highest d-beam energy:		

Cross section Tensor and vector analyzing powers Spin correlations

D. Mchedlishvili et al. EPJA, 49, 49 (2013)

High statistics data at 363 MeV/A: Vector analyzing powers, Spin correlations

Polarized proton beams:

Extension of q range at 600 MeV/A: Tensor and vector analyzing powers S.Dymov et al., PLB 744, 391 (2015)

B.Gou et al., PLB 741, 305 (2015)

$d\vec{p} \rightarrow \{pp\}_{S}n$ data at T_{N} =363 MeV: higher E_{pp} cuts

Higher waves in *pp* system are important, proper integration with acceptance needed

С. Ды

pp-elastic cross section: Target Density (2)

Dedicated software package determines:

- •Revolution frequency
- •Frequency shift
- •Target density

Luminosity error 3%

pp-elastic cross section: Results (1)

С. Дымов Изучение упругих *NN*-взаимодействий с использованием поляризованных пучков и мишенина ANKE-COSY

np program: quasi-elastic pn

Compatible with existing data

SAID SP07 describes well at 796 MeV. Dedicated SAID solution at 1.6 GeV

С. Дымов Изучение упругих NN-взаимодействий с использованием поляризованных пучков и мишенина ANKE-COSY