Отчёт по Проекту « ALICE « (шифр темы 02-1-1088 : Исследование взаимодействий пучков тяжёлых ионов и протонов на коллайдере LHC) за период 2017-2019 гг и планы на продление Проекта на следующие 3 года (2020-2022 гг.)

Участники Проекта:

ОИЯИ, Дубна: А.С. Водопьянов, Б.В. Батюня, Ю.Л. Вертоградова, Н.В. Горбунов, С. Григорян, Е.М. Кислов, А.О. Кондратьев*, А.В. Кузнецов, Н.А. Кузьмин, Л.В. Малинина**, К.Р. Михайлов***, П.В. Номоконов, Ю.П. Петухов, В.Н. Поздняков, Е.П. Рогочая, Г.Э. Романенко****, Б.Д. Румянцев, И.А. Руфанов, Г.Г. Стифоров, А.Г. Федунов

* Университет Дубна ** По совместительству из НИИЯФ МГУ (Москва) *** По совместительству из ИТЭФ (Москва) **** МГУ

ALICE является многоцелевым экспериментом для исследования взаимодействий тяжёлых ионов, который был создан для изучения физики сильно взаимодействующей материи и кварк - глюонной плазмы в ядро-ядерных столкновениях на LHC. В настоящее время в этом эксперименте участвуют более 1800 специалистов из 174 институтов из 42 стран.

Главные усилия группы ОИЯИ в анализе данных и в физическом моделировании были сконцентрированы на изучении фемтоскопических (Бозе-Эйнштейна) корреляций, рождения лёгких векторных мезонов в ультра-периферических Pb-Pb столкновениях и рождения тяжёлых кваркониев. Кроме того группа ОИЯИ продолжала участвовать в поддержании и развитии GRID-ALICE анализа в ОИЯИ.

Раздел І. Исследование фемтоскопических корреляций.

Секция І.1. Введение.

Экстремально высокие плотности энергии, достигаемые в столкновениях тяжёлых ионов на LHC, могут приводить к образованию кварк-глюонной плазмы (КГП): состоянию материи с характерными партонными степенями свободы. Считается, что возникающая в результате столкновения сжатая сильно взаимодействующая система подвергается продольному и поперечному расширению. Экспериментально такое расширение может проявлять себя через корреляции Бозе-Эйнштейна для пар тождественных частиц или через корреляции пар нетождественных частиц за счёт сильных взаимодействий в конечном состоянии.

За период 2017-2019 гг группа ОИЯИ провела целый ряд различных типов анализа фемтоскопических корреляций заряженных каонов (K^{ch}K^{ch}) в pp, p-Pb и Pb-Pb соударениях при энергиях 13 ТэВ, 2.76 ТэВ и 5.02 ТэВ (на пару нуклонов) соответственно. При этом был использован опыт, накопленный в предыдущие годы по методическим исследованиям (отбору отдельных частиц и их пар, идентификации каонов и учёту фона) и использованию различных Монте-Карло генераторов событий. Изучались зависимости фемтоскопических радиусов от множественности (центральности) и поперечного импульса пары частиц (k_т),

делалось сравнение с частицами других типов и предсказаниями теоретических моделей. Часть результатов была представлена на международных конференциях и опубликована, по некоторым другим результатам исследования продолжаются. Подробнее эти результаты будут обсуждаться в секциях I.2- I.4.

Секция I.2. Исследование корреляций пар нетождественных каонов (K⁺K⁻) в Pb-Pb соударениях при энергии 2.76 ТэВ (на пару нуклонов).

После завершения фемтоскопического трёхмерного (3-Д) анализа пар тождественных каонов (K^{ch}K^{ch}) для соударений Pb-Pb при энергии 2.76 ТэВ и опубликования результатов [1] группой ОИЯИ был проделан детальный анализ K⁺K⁻ пар в рамках Модели взаимодействия частиц в конечном состоянии Р. Ледницкого и В. Любошица [2]. Как и ранее, особое внимание уделялось максимально точному измерению чистоты отобранных каонов (purity) с использованием методов, разработанных группой ОИЯИ в предыдущих исследованиях. Чистота одиночных каонов и пар каонов приведена на Рис.1.

Рис.1. (Слева): чистота выделения отдельного каона в зависимости от его импульса и для трёх центральностей событий; **(справа):** чистота выделения пары каонов в зависимости от поперчного импульса пары (k_T).

Корреляционная функция пар K⁺K⁻ определялась в эксперименте по известному правилу $C(p_1, p_2) = A(p_1, p_2)/B(p_1, p_2)$, где двухчастичные распределения A и B получены для пар частиц из одного или из разных событий (методом смешивания). Для 1Д анализа $C(p_1, p_2)$ представляется в зависимости от

$$q_{\rm inv} = \sqrt{|\mathbf{q}|^2 - q_0^2}$$

где $\mathbf{q} = \mathbf{p}_1 - \mathbf{p}_2$ и $\mathbf{q}_0 = \mathbf{E}_1 - \mathbf{E}_2$. Типичная форма корреляционной функции показана на Рис.2, где синие точки получены в эксперименте, а красная кривая – результат аппроксимации в модели по общей формуле

$$C_{FSI}(p_1,p_2) = 1 + C_{SFSI}(p_1,p_2) + N_1 C_{\Phi-direct}(p_1,p_2) + N_2 C_{\Phi}(p_1,p_2)$$

Детально приведенная выше формула рассмотрена в работе [1]. Здесь отметим, что C_{sFSI} определяет вклад f_0 и a_0 мезонов, а $C_{\varphi\text{-direct}}$ и C_{φ} вклады φ мезонов, образующихся соответственно на кварк-глюонном этапе и на этапе взаимодействия адронов. В качестве свободных параметров берутся: радиус источника излучения K^+ и K^- , масса f_0 мезона, константы связи для каналов $f_0 \rightarrow K^+K^-$, $f_0 \rightarrow \pi\pi$ и доли вкладов N_1 , N_2 . Остальные величины взяты из ранее проведенных исследований. Полученные из аппроксимации значения массы и ширины f_0 составили 972 ± 3 MeV/c2 и 40 ± 5 MeV, что соответствует табличным величинам. Значения N_1 и N_2 равнялись 0.8 и 0.2.

Рисунок 3 показывает зависимости радиусов источника (R_{inv}) от поперечного импульса пары K^+K^- (κ_T) для событий с различными центральностями. Для сравнения приведены также результаты, полученные для пар тождественных каонов (K^+K^+/K^-K^-).

Рис.3. Зависимости радиуса источника излучения пар каонов от поперечного импульса пары для Pb-Pb событий с различными центральностями. Результаты для K⁺K⁻ (K⁺K⁺/K⁻K⁻) показаны открытыми (сплошными) символами.

Из Рис.З видно, что радиусы для нетождественных и тождественных каонных пар совпадают и уменьшаются с ростом величин центральности и k_T, что соответствует предсказаниям гидродинамических моделей. Результаты докладывались на XX GDRE Международном Рабочем совещании в Нанте (Nantes, France, July 2018) и на Рабочем совещании в CERN

(13.02.2019).

Секция I.3. Исследование корреляций пар тождественных каонов в p-Pb соударениях при энергии 5.02 ТэВ (на пару нуклонов).

Экспериментальное исследование фемтоскопических корреляций каонных пар в p-Pb (как и в других p-A) соударениях проводилось впервые. Основной интерес заключается в сравнении размеров источника испускания частиц с размерами, полученными для p-p и Pb-Pb столкновений. Подобное сравнение для пар пионов показало, что радиусы источника в p-Pb столкновениях ближе к радиусам в p-p чем в Pb-Pb соударениях, что указывает на ослабленное влияние коллективных эффектов в p-Pb взаимодействиях и противоречит предсказаниям ряда моделей. Ограниченная статистика, полученная в процессе Run1 на LHC позволила провести лишь 1-Д анализ, который в настоящий момент практически завершён и публикация с результатами находится на последнем этапе подготовки. Корреляционная функция определялась по методу, указанному в Секции 1.2, и аппроксимация проводилась по формуле [3]

$$C(q_{\text{inv}}) = N\left[1 - \lambda + \lambda K(r, q_{\text{inv}})\left(1 + \exp\left(-R_{\text{inv}}^2 q_{\text{inv}}^2\right)\right)\right] D(q_{\text{inv}})$$

где N — коэффициент нормировки, К — функция кулоновского взаимодействия с радиусом r, D — функция, отражающая фоновые эффекты, и λ — фактор силы корреляции. Типичная корреляционная функция с результатом аппроксимации и фоновой функцией показана на Puc.4. Информация на рисунке указывает интервалы поперечного импульса пары (k_т) и центральности события. Полученные из аппроксимации значения R_{inv} в зависимости от k_т

Рис.4. Корреляционная функция пар К[±] К[±] в зависимости от q_{inv}. Красные точки – эксперимент, красная кривая – результат модельного фита, кружки фоновая функция.

Рис.5. Радиус источника излучения каонов (R_{inv}) в зависимости от к_т и центральности событий. Результаты модели EPOS приведены для сравнения.

4

и центральности событий приведены на Рис.5 (сплошные символы), откуда видно, что R_{inv} растут с ростом множественности (падением центральности), а для больших значений множественности наблюдается уменьшение R_{inv} с увеличением к_т. Такое поведение R_{inv}, характерное для столкновения тяжёлых ядер, указывает на некоторое проявление коллективного эффекта в системе p-Pb с относительно малым количеством нуклонов. Из Puc.4 также видно, что результаты модели EPOS (открытые символы) близки к экспериментальным только при учёте адронных каскадов (EPOS w/ casc), которые проявляются на стадии взаимодействия адронов в конечном состоянии.

На Рис.6 показана зависимость R_{inv} от множественности заряженных частиц (N_{ch}) в pp, p-Pb и Pb-Pb столкновениях при близких значениях k_{T} каонных пар.

Рис.6. Зависимость R_{inv} для каонов от множественности заряженных частиц (N_{ch}) для разных взаимодействующих систем.

Как видно из Рис.6, R_{inv} совпадают для pp и p-Pb столкновениях при одинаковых N_{ch}, но сделать однозначное заключение при сравнении с Pb-Pb событиями затруднительно из-за большой разницы наблюдаемых множественностей заряженных частиц.

Полученные результаты были представлены на конференции XII WPCF (June 2017, Amsterdam), на Физическом Форуме ALICE (CERN, 16.03.2018) и на Рабочем совещании ALICE (CERN, 30.01.2019).

Секция І.4. Выводы для раздела І и планы на 2020-2022 гг.

Основные выводы приведенных результатов следующие:

--- Проделан новый 1-Д фемтоскопический корреляционный анализ для пар нетождественных (К⁺ и К⁻) каонов, образующихся в Pb-Pb взаимодействиях при энергии 2.76 TeV (на пару нуклонов). Большое внимание уделялось максимально точному измерению чистоты отобранных каонов с использованием разработанного в группе ОИЯИ метода.

При описании экспериментальных результатов в Модели взаимодействия частиц в конечном состоянии Р. Ледницкого и В. Любошица был использован (в сотрудничестве с Р. Ледницким) новый специальный выбор параметров модели, при котором свободными параметрами оставались радиус источника излучения каонов, масса f_0 мезона, константы связи для каналов $f_0 \rightarrow K^+K^-$, $f_0 \rightarrow \pi\pi$ и доли различных механизмов рождения ϕ мезонов. В результате этих исследований было показано, что радиусы источников для нетождественных и тождественных каонных пар совпадают по величинам с одинаковыми зависимостями от центральности событий и поперечного импульса пары. Этот результат соответствует предсказаниям гидродинамических моделей.

--- Впервые в мире проведено экспериментальное исследование фемтоскопических

корреляций каонных пар в p-Pb (как и в других p-A) соударениях. Было найдено совпадение размеров источника испускания каонов с размерами, полученными для p-p столкновений при одинаковых множественностях событий, что отличается от результатов исследования корреляций для пионных пар. Интересный вопрос сравнения с Pb-Pb соударениями пока остаётся открытым из-за недостаточной статистики.

Было также показано соответствие экспериментальных результатов предсказаниям гидродинамической модели EPOS при учёте в модели каскадов на стадии взаимодействия адронов в конечном состоянии.

На 2020-2022 гг запланированы следующие пункты по исследованиям фемтоскопических корреляций:

--- В 2020 году планируется завершить 1-Д анализ фемтоскопических корреляций для каонных пар в p-Pb и Pb-Pb столкновениях при энергиях 5.02 и 2.76 TeV (на пару нуклонов) соответственно с подготовкой и выпуском публикаций.

--- Провести 3-Д анализ фемтоскопических корреляций каонных пар в p-Pb и Pb-Pb стокновениях при энергиях 5.02 TeV (на пару нуклонов) на максимальной статистике, полученной на 2-м этапе работы LHC (Run-2) соответственно 160 млн и 78 млн событий.

--- Сравнить полученные результаты с результатами других экспериментов и предсказаниями различных теоретических моделей: HKM, EPOS, QGSM, DPMJET.

--- Провести 1-Д анализ фемтоскопических корреляций для тождественных каонных пар в pp столкновениях при 13 TeV с отбором сферичных и струйных событий. Проверить указание на отсутствие зависимости R_{inv} от k_T пар для сферичных событий, наблюдаемое в эксперименте ALICE для заряженных пионов [3].

--- Исследовать 1-Д фемтоскопические корреляций для нетождественных K⁺K⁻ пар в p-Pb столкновениях при 5.02 TeV.

--- В 2022-м году изучить возможности анализа фемтоскопических корреляций пар ф мезонов в pp взаимодействиях при 13 TeV на моделированных и реальных событиях.

Раздел II. Изучение рождения кваркониев (J/ψ, Y) в димюонной моде распада.

Физическая программа эксперимента ALICE включает изучение рождения чармониев (J/ ψ , ψ (2S)) и боттомониев (Y семейство) в p-p, p-Pb и Pb-Pb столкновениях. Важной составляющей этих исследований является создание Монте-Карло генераторов, необходимых для моделирования различных процессов. Одним из ответственных за создание и работу генератора адронов тяжёлых ароматов и их распадов в димюонной моде является сотрудник группы ALICE ОИЯИ, Смбат Григорян. С использованием ранее разработанных и модернизированных генераторов продолжается анализ экспериментальных данных для событий, полученных в процессе Run-2 с повышенной энергией и высокой статистикой. Детальные результаты были получены по определению фактора ядерной модификации (R_{AA}) для Υ (1s) и Υ (2s), образующихся в Pb-Pb столкновениях при 5.02 TeV [9]. Значение R_{AA} определялось из выражения

$$R_{AA} = \frac{N^{\Upsilon}}{BR_{\Upsilon \to \mu^{+}\mu^{-}} \cdot (A \times \varepsilon)_{\Upsilon \to \mu^{+}\mu^{-}} \cdot N_{\mu\mu - MB} \cdot F_{norm} \cdot \sigma_{pp}^{\Upsilon} \cdot \langle T_{AA} \rangle}$$

где N^{Υ} — число распадов Υ на мюонные пары, $BR_{\Upsilon} \rightarrow \mu\mu$ — доля этих распадов, $(A \times \epsilon)_{\Upsilon}$ — фактор аксептанса и эффективности детектора, $N_{\mu\mu-MB}$; F_{norm} — фактор нормировки, $\sigma_{pp}^{\ \Upsilon}$ — сечение в pp столкновениях, T_{AA} — функция ядерного перекрытия.

Рис.7. Фактор ядерной модификации (R_{AA}) для $\Upsilon(1s)$, образующихся в Pb-Pb столкновениях при 5.02 TeV с числом нуклонов — участников N_{part} в сравнении с теоретическими моделями.

Интегральные величины R_{AA} равнялись 0.37 ± 0.02 и 0.1 ± 0.04 для $\Upsilon(1s)$ и $\Upsilon(2s)$ соответственно, что указывает на усиление поглощения в ядрах кваркониев с ростом их массы. На Рис.7 представлен фактор ядерной модификации (R_{AA}) для $\Upsilon(1s)$, образующихся в Pb-Pb столкновениях при 5.02 TeV с числом нуклонов — участников N_{part} в сравнении с теоретическими моделями [10]. Как видно из рисунка, модели качественно и отчасти количественно описывают экспериментальные результаты.

В группе ALICE ОИЯИ предложена новая термальная модель на основе Tsallisраспределения [11] и модели Blast-wave [12]. Описание и результаты предсказаний модели докладывались на конференции CNFP-2017 (Crete) и опубликованы в [13]. Новая модель хорошо описывает спектры образующихся пионов и кваркониев (J/ψ, Y) в pp соударениях в широкой области энергий (5 GeV — 13 TeV). Основная формула для расчёта спектров частиц имеет вид:

$$\frac{d^2 N}{p_{\rm T} dp_{\rm T} dy} = g \frac{3V_0}{8\pi^2} \sum_{k=0}^{\infty} \xi^k \binom{q-1+k}{k} \int_{-\eta_{max}}^{\eta_{max}} \frac{d\eta}{\eta_{max}} \\ \times \int_0^{R(\eta)} \frac{r dr}{R_0^2} \frac{m_{\rm T} \cosh(y-\eta) a^{\frac{q+k}{q-1}}}{\left[1 + \frac{\gamma_r m_{\rm T} \cosh(y-\eta) - \mu}{T/(q-1)}\right]^{\frac{q+k}{q-1}}} P_{\frac{k+1}{q-1}}(a) ,$$

где V₀ и R₀ объём и поперечный радиус файербола с температурой T, q параметр Tsallisраспределения, μ химический потенциал, γ_r гамма фактор поперечного потока, g=2J+1 спиновый фактор частицы, ξ =1(-1) для бозонов (фермионов), P_x(а) функция Лежандра. Выбор значений всех параметров детально описан в [13].

Рис.8. Дифференциальные сечения рождения J/ψ в pp столкновениях при различных энергиях. Кривые — результаты фитирования в модели.

Рис.9. Дифференциальные сечения рождения ψ(2s) в pp при 7 TeV в различных экспериментах. Кривые - результаты фитирования в модели.

Рис.10. Дифференциальные сечения рождения $\Upsilon(1s)$ в зависимости от энергии в рр столкновениях. Кривые - результаты фитирования в модели.

На Рис. 8-10 приведены экспериментальные и модельные дифференциальные сечения кваркониев. Видно, что модель хорошо описывает экспериментальные спектры.

Выводы для раздела II и планы на 2020-2022 гг.

--- С использованием модельных генераторов адронов и программного обеспечения анализа рождения тяжёлых кваркониев, созданных с участием группы ОИЯИ, были получены новые интересные результаты, в том числе значения факторов ядерной модификации для $\Upsilon(1s)$ и $\Upsilon(2s)$ в Pb-Pb соударениях при 5.02 TeV. Полученные значения согласуются качественно и отчасти количественно с предсказанием теоретических моделей.

--- В группе ALICE ОИЯИ предложена новая термальная модель на основе Tsallisраспределения и модели Blast-wave. Модель хорошо описывает спектры образующихся пионов и кваркониев (J/ψ, Y) в pp соударениях в широкой области энергий (5 GeV — 13 TeV) и может быть использована при анализе экспериментальных результатов в различных экспериментах.

Планы на 2020-2022 гг:

- 1. Участвовать в поддержании и обновлении программного обеспечения по рождению кваркониев и генератора адронов тяжёлых ароматов, с использованием последних результатов LHC экспериментов и новых теоретических разработок.
- 2. Участвовать в интерпретации результатов по рождению кваркониев в p-p, Pb-Pb и p-Pb (Pb-p) столкновениях.
- 3. Подготовить версию феноменологической термальной модели на основе Tsallis распределения с возможным описанием имеющихся экспериментальных данных для различных адронов (от пионов до кваркониев) образующихся в p-A и A-A столкновениях.

Раздел III Исследование ультра-периферических столкновений тяжелых ионов.

Ультра-релятивистские тяжелые ионы являются источником сильного (~Z²) электромагнитного поля - потока квазиреальных фотонов в рамках подхода Вайцзекера-Вильямса [15]. В случае больших (> суммы радиусов) прицельных параметров сталкивающихся ионов взаимодействия называют ультра-периферическими столкновениями (УПС). В таких взаимодействиях возможно фоторождение векторных мезонов - фотон поля одного ядра флуктуирует в связанную кварк-антикварковую пару, которая затем упруго рассеивается на другом ядре через обмен помероном. В период 2017-2019 гг группа ОИЯИ-ALICE участвовала в исследованиях рождения одиночных векторных мезонов (фотонпомеронных взаимодействий) J/ψ и ρ⁰ в Pb-Pb ультра-периферических столкновениях с энергией 5.02 TeV (на пару нуклонов). Подобный процесс может происходить на ядре как целом (когерентное фоторождение) или же на нуклоне ядра (некогерентный процесс). На Рис.11 показано распределение по инвариантной массе $\mu^+\mu^-$ пар, наблюдаемых в области больших быстрот (в мюонном плече установки). Большая статистика, полученная в процессе Run2 LHC, позволила выделить пик J/ψ с очень хорошей точностью и наблюдать более тяжёлое состояние ψ(2s). Чёрная кривая является результатом фитирования экспериментальных данных с помощью конволюции двух функций: Crystal-Ball [16] (зелёная кривая) и фоновой «подложки» (красная кривая). Синяя кривая — результат фитирования ψ(2s) функцией Breit-Wigner. На Рис.12 приведено дифференциальное сечение когерентного рождения Ј/џ в зависимости от быстроты в сравнении с теоретическими моделями [17-21] с различной степенью глюонного затенения в ядерной среде. Основной вывод — наиболее хорошее описание достигается при умеренной степени глюонного затенения. На Рис.13 показано распределение по инвариантной массе $\pi^+\pi^-$ пар, наблюдаемых в центральной области быстрот, где пик от ρ^0 выделяется также очень хорошо. Красная кривая на рисунке показывает сумму вкладов резонанса (Breit-Wigner — зелёная кривая), пряморожденных пар (жёлтая кривая), ρ^0 - ω интерференции (синяя кривая), отражения от трёхпионного распада ω (фиолетовая кривая). На Рис.14 дифференциальное сечение когерентного рождения ρ^0 в зависимости от быстроты сравнивается с предсказаниями теоретических моделей [17,18,22,23]. Видно, что при некоторых параметрах соответствие теории с экспериментом наблюдается во всех моделях кроме STARLIGHT [17].

Рис.11. Распределение по инвариантной массе µ⁺µ⁻ пар. Кривые линии обозначают разные вклады (смотрите текст).

Рис.12. Сравнение дифференциального сечения когерентного рождения J/ψ с предсказанием различных моделей.

Рис.13. Распределение по инвариантной массе π⁺π⁻ пар. Кривые линии обозначают разные вклады (смотрите текст).

Рис.14. Сравнение дифференциального сечения когерентного рождения р⁰ с предсказанием различных моделей.

Рассмотренные результаты представлялись на конференции EPS - HEP, 2017 (Venice, Italy) и на рабочих совещаниях ALICE. Планируемые публикации находятся в стадии подготовки.

На Рис.15 показан предварительный результат, представляющий распределение по инвариантной массе четырех пионов (π + π + π - π -). Значения массы (1511 ± 9 MeV/c²) и ширины (315 ± 14 MeV) наблюдаемого пика указывает с большой вероятностью на рождение ρ^0 (1450) с табличными значениями массы и ширины 1465 ± 25 MeV/c² и 400 ± 60 MeV, соответственно. Этот предварительный анализ планируется повторить со значительным увеличением статистики, полученной в 2018-м году.

Рис.15. Распределение по инвариантной массе четырёх пионов (π + π + π - π -).

Выводы для раздела III и планы на 2020 — 2022 гг.

---- С использованием большой статистики, полученной в течение 2015-2018 гг, измерено с хорошей точностью дифференциальное сечения когерентного рождения J/ψ в Pb-Pb ультрапериферических столкновениях с энергией 5.02 TeV. Показано, что наиболее хорошее описание экспериментальных данных теоретическими моделями достигается при умеренной степени в моделях глюонного затенения.

--- На статистике, полученной в течение 2015 г, измерено дифференциальное сечение когерентного рождения ρ⁰ в ультра-периферических Pb-Pb столкновениях с энергией 5.02 TeV. Показано согласие экспериментальных результатов с предсказанием рядя теоретических моделей.

--- На малой статистике получен предварительный результат для распределения по инвариантной массе четырех пионов (π+π+π-π-) с указанием на резонанс ρ⁰(1450), что даёт возможность в дальнейшем более детального изучения характеристик наблюдаемого резонанса на полной статистике.

Планы на 2020 — 2022 гг

--- В 2020 году завершить исследование когерентного рождения J/ψ (на максимальной статистике) и ρ⁰ (на статистике 2015 г.) в Pb-Pb столкновениях при 5.02 TeV с подготовкой и выпуском публикаций.

--- В 2020-2022 гг на максимальной статистике для Pb-Pb столкновений при 5.02 TeV провести анализ когерентного и некогерентного фоторождения ρ^0 и некогерентного фоторождения J/ ψ .

-- Провести анализ событий 4-х-пионных состояний с уточнением параметров резонанса ρ⁰(1450).

---На максимальной статистике для p-Pb столкновений при 5.02 TeV измерить сечение фоторождения ρ^0 и сравнить с результатами экспериментов на коллайдере HERA.

--- В 2022 году начать анализ событий с парным рождением векторных мезонов в двухфотонных взаимодействиях с акцентом на поиск ρ^0+J/ψ состояний.

На всех этапах исследований по всем перечисленным направлениям представлять результаты на международных форумах и в виде публикаций в журналах.

Раздел IV. Поддержание и развитие системы ALICE-GRID в ОИЯИ

В период с 2017 — 2019 гг в ОИЯИ выполнялось своевременное обновление текущего программного обеспечения, вычислительных узлов и систем хранения данных, а также производилось тестирование нового программного обеспечения xrootd, EOS, CVMFS.

Название	CE HEPSPEC	SE Тб
Национальный Исследовательский		
Центр "Курчатовский Институт"(tier 1)	32800	2520 +2960 type
Национальный Исследовательский		
Центр "Курчатовский Институт"(tier 2)	4488	316
Объединённый Институт		
Ядерных Исследований (Дубна)	8460	680
Петербургский Институт Ядерной		
Физики (Гатчина)	2640	44
Институт Ядерных Исследований		
Российской Академии Наук (ИЯИ		
PAH)	641	116
Институт Теоретической и		
Экспериментальной Физики	2124	300
Институт Физики Высоких Энергий		
(Протвино)	2631	297
Национальный исследовательский		
ядерный университет «МИФИ»	769	40
Санкт-Петербургский		
Государственный Университет	4155	128
Российский Федеральный Ядерный		
Центр (Саров)	7466	250

Таблица 1. Параметры компьютерных GRID-ALICE центров в российских институтах

В Таблице 1 приведены Параметры компьютерных GRID-ALICE центров в 9-ти российских институтах в 2017 и 2018 гг, где SE — накопительные элементы (диски), CE HEPSPEC - тест для измерения производительности процессора. На Рис.14 показаны относительные вклады российских институтов в число просчитанных задач в системе GRID в 2018 году. Из Табл. 1 и Рис. 14 видно, что значительная доля ресурсов и задач приходится на компьютерный центр первого уровня (tier-1) Курчатовского Института. Остальные институты (в том числе и центр Курчатовского Института) имеют компьютерные центры второго уровня (tier-2), среди которых ОИЯИ занимает лидирующую позицию (15,8 %). Общий вклад российских центров в ALICE-GRID составляет 5,7 %, что видно из Рис.15. Кроме текущих работ А.О. Кондратьевым выполнялись работы по системному администрированию JIRA и разработке модуля jalien для связи с центральными сервисами ALICE, через Java websocket.

Рис.14. Относительные вклады российских институтов в число просчитанных задач в системе GRID в 2018 году (от полного вклада 5.7 % в ALICE-GRID).

Рис.15. Относительные вклады всех институтов в число просчитанных задач в системе ALICE-GRID в 2018 году.

Планы на следующее пятилетие.

--- Поддержка GRID структуры эксперимента ALICE в JINR, в частности:

переход на новое программное обеспечение, регулярная замена устаревающих вычислительных узлов и систем хранения данных на новые.

--- Участие в реализации проекта по использованию мощностей суперкомпьютеров и в развитии других GRID технологий в ALICE.

--- Поддержка стабильного функционирования локального кластера.

Литература (выделенными номерами обозначены работы, выполненные при активном участии сотрудников группы ОИЯИ-ALICE за 2017-2019 гг).

[1] "Kaon femtoscopy in Pb–Pb collisions at $(s_{NN})^{-0.5} = 2.76$ TeV", S. Acharya et al., [ALICE Collaboration], Phys.Rev.C96 (2017) 064613.

[2] R.Lednicky and V.L. Lyuboshitz, Sov. J. Nucl. Phys. 35 (1982) 770;

R.Lednicky, Phys. of Part. and Nucl. Lett. Vol 8, (2011) 965.

[3] Yu. Sinyukov at al., Phys. Lett. B432 (1988) 248-257;

M.G. Bowler, Z. Phys. C29(1985) 617.

[4] "Measuring $K^0 {}_{s}K^{\pm}$ interactions using Pb-Pb collisions at (s_{NN}) -^{0.5} = 2.76 TeV.";

S. Acharya et al. [ALICE Collaboration], Phys.Let. B774 (2017) 64.

[5] "Azimuthally differential pion femtoscopy relative to the third harmonic event plane in Pb-Pb collisions at $(s_{NN})^{1/2} = 2.78$ TeV.", ALICE Collaboration (S.Acharya et al.), Phy.Lett. B785 (2018) 320-331.

[6] "pp, p- Λ and Λ - Λ correlations studied via femtoscopiy in pp reactions at s^{1/2} = 7 TeV", [ALICE Collaboration] (S.Acharya et al), arXiv:1805.12455, 2018.

[7] "Measuring $K_s^0 K^{\pm}$ interactions using pp collisions at $s^{1/2} = 7$ TeV", [ALICE Collaboration], (S.Acharya et al), Phys.Lett. B790 (2019) 22.

[8] "Event-shape and multiplicity dependence of freeze-out radii in pp collisions at $s^{1/2}$ = TeV", S. Acharva et al. (for ALICE Collaboration), arXiv:1901.05518, 2019.

[9] " Υ supression at forward rapidity in Pb-Pb collisions at $(s_{NN})^{1/2}=5.02$ TeV", S.Acharya et al. [ALICE Collaboration], Phys.Lett. B790 (2019) 89.

[10] X.Du et al., Phys. Rev. C96 (2017) 054901;

B.Krouppa et al., Phys. Rev. C97 (2018) 016017;

K.Zhou et al., Nucl.Phys. A931 (2014) 654.

- [11] C. Tsallis, J. Stat. Phys. 52 (1988) 479.
- [12] E. Schnedermann J. Sollfrank and U. Heinz, Phys.Rev. C 48 (1993) 2462.

[13] "Using the Tsallis distribution for hadron spectra in pp collisions: Pions and quarkonia at \sqrt{s} =

5 – 13000 GeV..", S. Grigoryan, Phys.Rev. D95 (2017) 056021.

[14] "J/ ψ suppression at forward rapidity in Pb-Pb collisions at $(s_{NN})^{1/2}$ =5.02 TeV", J. Adam et al.

[ALICE Collaboration], Phys.Lett. B766 (2017) 212.

[15] C. F. Weizsacker, Z. Phys. 88, 612 (1934); E.J. Williams, Phys. Rev. 45, 729 (1934).

[16] J.E. Gaiser, SLAC Stanford – SLAC-255 (82, REC.JUN.83) 194 p.

[17] S.R. Klein et al., Comput. Phys. Commun.212 (2017) 258 (STARLIGHT).

- [18] V. Guzey et al., Phys. Rev. C93 (2016) 055206 (GKZ-EPS09).
- [19] J. Cepila et al., Phys. Rev. C 97 (2018) 024901 (CCK).
- [20] T. Lappi et al., Phys. Rev. C 87 (2013) 032201 (LM).
- [21] V.P. Goncalves et al., Phys. Rev. C90 (2014) 015203 (GM).
- [22] V.P. Goncalves and M. Machado, , Phys. Rev. C80 (2009) 054901 (VG).
- [23] J. Cepila et al., Nucl. Phys. B934 (2018) 330 (CCK).

Доклады на коференциях сотрудников группы ОИЯИ-ALICE в период 2017-2019 гг.

1. K. Mikhaylov (JINR/Moscow ITEP), "Kaon femtoscopy with EPOS3 model", GDRE Workshop, Subatech, Nantes, July 2017.

2. L.Malinina (JINR/Moscow St. University, SINR), "K^{ch}K^{ch} femtoscopy of PbPb collisions at 2.76 and 5.02 TeV ", GDRE , Subatech, Nantes, July 2017.

3. E, Rogochaya (JINR), "Charged kaon femtoskopy correlations in p-Pb collisions at 5.02 TeV with ALICE at the LHC", XII WPCF, June 2017, Amsterdam.

4. V.Pozdnyakov (JINR), "Measurements of vector meson photoproduction with ALICE in ultraperipheral Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV", EPS Conference on HEP, 2017 (Venice, Italy). **5.** S.Grigoryan (JINR), "Using the Tsallis distribution for hadron spectra in pp collisions: Pions and duarkonia at $\sqrt{s} = 5 - 13000$ GeV." CNFP-2017 (Crete).

6. K. Mikhaylov (JINR/Moscow ITEP), "Non-identical kaon femtoscopy with ALICE experiment", XX GDRE Workshop, Subatech, Nantes, July 2018.

7. V. Pozdnyakov (JINR), "Ultra-peripheral vector meson photoproduction in Pb-Pb interactions at ALICE", QCD18 21th Conference on HEP (Montpellier, France, July, 2018).

8. G.Stiforov (JINR), A.Zarochentsev (SpbSU), "Operations and plans – RDIG", T1/T2 Workshop (Derby. GB, April, 2018).

Активность по другим видам научной деятельности.

- Выборы в 2018-м году Л. Малининой конвинером ALICE в группе исследований по фемтоскопии.

- Участие Л. Малининой (руководитель), К. Михайлова (руководитель), Е. Рогочей во внутренних ревизионных комитетах по различным публикациям ALICE.

- Участие группы ОИЯИ во внутренних институтских ревизионных комитетах по различным публикациям ALICE.

- Участие в дежурных сменах (~ 80 смен в год) во время набора экспериментальных данных.

Term № 24

Форма № 24

СОST ESTIMATE OF THE PROJECT ОЦЕНКА СТОИМОСТИ ПРОЕКТА «ALICE: A LARGE ION COLLIDER EXPERIMENT AT CERN LHC» (JINR participation) «ALICE: ИССЕДОВАНИЕ ВЗАИМОДЕЙСТВИЙ ПУЧКОВ ТЯЖЕЛЫХ ИОНОВ И ПРОТОНОВ НА LHC» (Участие ОИЯИ) ПРОДЛЕНИЕ ПРОЕКТА

Наименование Item	Стоимость Cost KUSD	2020	2021	2022
Direct costs				
Прямые расходы				
1. Materials (M&O)	360	120	120	120
 Оборудование (Equipment) 	120	40	40	40
 Командировочные расходы (Travel) 	400	120	140	140
TOTAL	880	280	300	300

Руководитель проекта

H Boy

А.С.Водопьянов

Директор Лаборатории

В.Д.Кекелидзе

Ведущий инженер-экономист Лаборатории

Л.М.Ноздрина

Предлагаемый план-график и необходимые ресурсы для осуществления проекта «ALICE: A Large Ion Collider Experiment at CERN LHC (JINR participation)» "ALICE: Исследование взаимодействий пучков тяжелых ионов и протонов на LHC (участие ОИЯИ)"

(продление проекта)

Наимен установк финанси	ование узл и, ресурсс прования	нов и систем ив, источников	Стоимость узлов установки (тыс.дол. США) Потребности в ресурсах	1 год	2 год	3 год
Основные узлы и оборудование	1. Плат	ежи в ЦЕРН	360.0	120.0	120.0	120.0
	2. Компы оборудог	отерное зание.	120.0	40.0	40.0	40.0
	3. Коман расходы	дировочные	400.0	120.0	140.0	140.0
	итого		880.0	280.0	300.0	300.0
Необходимые ресурсы	Нормо-часы	ооэп лфвэ				
Источники финансирования	Бюджет	Затраты из бюджета	880.0	280.0	300.0	300.0
	Внебюджетные средства	Целевое финансирование				

Руководитель проекта

A Boy

Руководитель проекта

/ Водопьянов А.С./