The $\boldsymbol{R}_{D^{(*)}}$ and $\boldsymbol{R}_{J / \psi}$ puzzles

Thang C. Tran
Università di Napoli Federico II \& INFN - Napoli

(in collaboration with M.A. Ivanov, J.G. Körner, P. Santorelli)

[Phys.Rev. D92 (2015), 114022; Phys.Rev. D94 (2016), 094028; Phys.Rev. D95 (2017), 036021; Phys.Part.Nucl.Lett. 14 (2017), 669-676; Phys.Rev. D97 (2018), 054014]

Helmholtz-DIAS International Summer School
"QFT at the Limits: from Strong Fields to Heavy Quarks" JINR, Dubna, July 22 - August 2, 2019

Outline

- Introduction to semileptonic B decay: How to calculate the decay width in the SM + Helicity Amplitude technique
- Form factor in the Covariant Confining Quark Model
- Analyze possible NP effects in the decays $\bar{B}^{0} \rightarrow D^{(*)} \tau^{-} \bar{\nu}_{\tau}$: general effective Hamiltonian approach + experimental constraints + observables
- More observables: Tau polarization and NP
- Implication of NP in $B_{c} \rightarrow\left(J / \psi, \eta_{c}\right) \tau \nu$

Several B-decay diagrams

Figure: M. Artuso, E. Barberio, S. Stone, PMC Phys. A3 (2009) 3
Lectures in this School by P. Colangelo and D. Melikhov

Nonleptonic decays: Simplified VS. Realistic

Figure: M. Neubert, hep-ph/0001334
Lectures in this School by P. Santorelli and M. A. Ivanov
(Purely) leptonic decays: Helicity suppressed \& less rich phenomenology

$$
\begin{gathered}
\langle 0| \bar{q} \gamma^{\mu} \gamma_{5} b\left|B\left(p_{1}\right)\right\rangle=-f_{B} p_{1}^{\mu} \\
\mathcal{B}\left(B^{-} \rightarrow \ell^{-} \bar{\nu}_{\ell}\right)=\frac{G_{F}^{2}}{8 \pi}\left|V_{u b}\right|^{2} \tau_{B} m_{B} m_{\ell}^{2}\left(1-\frac{m_{\ell}^{2}}{m_{B}^{2}}\right)^{2} f_{B}^{2}
\end{gathered}
$$

$\approx O\left(10^{-4}\right), O\left(10^{-7}\right)$, and $O\left(10^{-11}\right)$ for $\ell=\tau, \mu, e$

- $B \rightarrow D^{(*)} \ell \bar{\nu}_{\ell}$ proceed via two sub-processes $b \rightarrow c W^{*-}$ and $W^{*-} \rightarrow \ell \bar{\nu}_{\ell}$
- Lepton pair is invisible to the strong force
- Matrix element in SM

$$
\mathcal{M}\left(B \rightarrow D^{(*)} \ell \bar{\nu}_{\ell}\right)=\frac{G_{F}}{\sqrt{2}} V_{c b} H^{\mu} L_{\mu}
$$

- leptonic and hadronic matrix elements

$$
\begin{aligned}
L_{\mu} & =\bar{\ell} \gamma_{\mu}\left(1-\gamma_{5}\right) \nu_{\ell} \\
H^{\mu} & =\left\langle D^{(*)}\right| V^{\mu}-A^{\mu}|B\rangle
\end{aligned}
$$

where $V^{\mu}=\bar{c} \gamma^{\mu} \boldsymbol{b}$ and $A^{\mu}=\bar{c} \gamma^{\mu} \gamma_{5} \boldsymbol{b}$ are flavor-changing vector and axial-vector currents, respectively.

- H^{μ} is constructed from four-vectors appearing in the transition (4-momenta and polarization vectors).
- For $B\left(p_{1}\right) \rightarrow D\left(p_{2}\right)\left(P=p_{1}+p_{2}, q=p_{1}-p_{2}\right):$

$$
\left\langle D\left(p_{2}\right)\right| V^{\mu}\left|B\left(p_{1}\right)\right\rangle=F_{+}\left(q^{2}\right) P^{\mu}+F_{-}\left(q^{2}\right) q^{\mu}
$$

- For $B\left(p_{1}\right) \rightarrow D^{*}\left(p_{2}, \epsilon_{2}\right)$

$$
\begin{aligned}
\left\langle D^{*}\left(p_{2}, \epsilon_{2}\right)\right| V^{\mu}-A^{\mu}\left|B\left(p_{1}\right)\right\rangle= & \frac{\epsilon_{2 \alpha}^{*}}{M_{1}+M_{2}}\left[-g^{\mu \alpha} \boldsymbol{P} \cdot \boldsymbol{q} A_{0}\left(q^{2}\right)+P^{\mu} \boldsymbol{P}^{\alpha} A_{+}\left(q^{2}\right)\right. \\
& \left.+q^{\mu} \boldsymbol{P}^{\alpha} A_{-}\left(q^{2}\right)+i \varepsilon^{\mu \alpha P q} V\left(q^{2}\right)\right]
\end{aligned}
$$

- where ϵ_{2}-polarization vector of D^{*} so that $\epsilon_{2}^{*} \cdot p_{2}=0$
- The particles are on shell: $p_{1}^{2}=m_{1}^{2}=m_{B}^{2}, p_{2}^{2}=m_{2}^{2}=m_{D^{(*)}}^{2}$.
- V^{μ} contributes to the FF $V\left(q^{2}\right)$, while A^{μ} - to $A_{ \pm, 0}\left(q^{2}\right)$.

Decay distribution and Helicity basis

$$
\frac{d \Gamma}{d q^{2} d \cos \theta}=\frac{\left|p_{2}\right|}{(2 \pi)^{3} 32 m_{1}^{2}}\left(1-\frac{m_{\ell}^{2}}{q^{2}}\right) \cdot \sum_{\text {pol }}|M|^{2}=\frac{G_{F}^{2}\left|V_{c b}\right|^{2}}{(2 \pi)^{3}} \frac{\left|p_{2}\right|}{64 m_{1}^{2}}\left(1-\frac{m_{\ell}^{2}}{q^{2}}\right) H^{\mu \nu} L_{\mu \nu}
$$

where $\left|p_{2}\right|=\lambda^{1 / 2}\left(m_{1}^{2}, m_{2}^{2}, q^{2}\right) / 2 m_{1}$ - momentum of $D^{(*)}$ in B rest frame, and θ - polar angle between $\vec{q}=\overrightarrow{\boldsymbol{p}}_{1}-\overrightarrow{\boldsymbol{p}}_{2}$ and \vec{k}_{1} in $\left(\ell^{-} \bar{\nu}_{\ell}\right)$ rest frame.

$$
\begin{aligned}
L_{\mu \nu} & =\operatorname{tr}\left[\left(k_{1}+m_{\ell}\right) \gamma_{\mu}\left(1-\gamma_{5}\right) k_{2} \gamma_{\nu}\left(1-\gamma_{5}\right)\right] \\
& =8\left(k_{1 \mu} k_{2 \nu}+k_{1 \nu} k_{2 \mu}-k_{1} k_{2} g_{\mu \nu}+i \varepsilon_{\mu \nu k_{1} k_{2}}\right) \\
H^{\mu \nu}= & \sum_{\text {pol }}\left\langle D^{(*)}\right| V^{\mu}-A^{\mu}|B\rangle \cdot\left\langle D^{(*)}\right| V^{\nu}-A^{\nu}|B\rangle^{\dagger} \\
= & \left\{\begin{array}{lr}
H_{\mu} H_{\nu}^{\dagger} & \text { for } \\
h_{\mu \alpha} h_{\nu \beta}^{\dagger}\left(-g^{\alpha \beta}+\frac{p_{2}^{\alpha} p_{2}^{\beta}}{M_{2}^{2}}\right) & \text { for } \\
B \rightarrow D^{*}
\end{array},\right.
\end{aligned}
$$

where $h_{\mu \alpha}$ is defined by: $H_{\mu}=\epsilon_{2}^{\dagger \alpha} h_{\mu \alpha}$.

- The Lorentz contraction can be evaluated in terms of the helicity amplitudes. J. G. Körner, G. A. Schuler, Z. Phys. C 38, 511 (1988), Phys. Lett. B 231, 306 (1989)
- Orthonormal and complete helicity basis $\epsilon^{\mu}\left(\lambda_{w}\right)$ with three spin-1 components orthogonal to the momentum transfer q^{μ}, i.e., $\epsilon^{\mu}\left(\lambda_{w}\right) q_{\mu}=0$, for $\lambda_{w}= \pm, 0$, and one spin- 0 (time) component $\lambda_{w}=t$ with $\epsilon^{\mu}(t)=q^{\mu} / \sqrt{q^{2}}$.

$$
\begin{aligned}
\epsilon_{\mu}^{\dagger}(m) \epsilon^{\mu}(n) & =g_{m n} \quad \text { (orthonormality) } \\
\epsilon_{\mu}(m) \epsilon_{\nu}^{\dagger}(n) g_{m n} & =g_{\mu \nu} \quad \text { (completeness) }
\end{aligned}
$$

with $m, n=\lambda_{w}=t, \pm, 0$ and $g_{m n}=\operatorname{diag}(+,-,-,-)$.

- Rewrite the contraction using the completeness relation

$$
\begin{aligned}
H^{\mu \nu} L_{\mu \nu} & =\sum_{m, m^{\prime}, n, n^{\prime}} H(m, n) L\left(m^{\prime}, n^{\prime}\right) g_{m m^{\prime}} g_{n n^{\prime}}, \quad\left(m^{(\prime)}, n^{(\prime)}=\lambda_{w}=t, \pm, 0\right) \\
L(m, n) & =L^{\mu \nu} \epsilon_{\mu}(m) \epsilon_{\nu}^{\dagger}(n) \\
H(m, n) & =H^{\mu \nu} \epsilon_{\mu}^{\dagger}(m) \epsilon_{\nu}(n)
\end{aligned}
$$

- $L(m, n)$ and $H(m, n)$ can now be evaluated in different Lorentz systems: $L(m, n)$ - in the $\left(\ell^{-} \bar{\nu}_{\ell}\right)-C M$ system whereas $H(m, n)$-in the B rest system.

In the B rest frame, the momenta and polarization vectors $\epsilon^{\mu}\left(\lambda_{w}\right)$ can be written as

$$
\begin{array}{ll}
p_{1}^{\mu}=\left(m_{1}, 0,0,0\right), & \epsilon^{\mu}(t)=\frac{1}{\sqrt{q^{2}}}\left(q_{0}, 0,0,\left|\mathbf{p}_{2}\right|\right), \\
p_{2}^{\mu}=\left(E_{2}, 0,0,-\left|\mathbf{p}_{2}\right|\right), & \epsilon^{\mu}(\pm)=\frac{1}{\sqrt{2}}(0, \mp 1,-i, 0) \\
\boldsymbol{q}^{\mu}=\left(q_{0}, 0,0,+\left|\mathbf{p}_{2}\right|\right), & \epsilon^{\mu}(0)=\frac{1}{\sqrt{q^{2}}}\left(\left|\mathbf{p}_{2}\right|, 0,0, q_{0}\right)
\end{array}
$$

where $E_{2}=\left(m_{1}^{2}+m_{2}^{2}-q^{2}\right) / 2 m_{1}$ and $q_{0}=\left(m_{1}^{2}-m_{2}^{2}+q^{2}\right) / 2 m_{1}$.
(a) $B \rightarrow D$:

$$
H_{\lambda_{w}}=\epsilon^{\dagger \mu}\left(\lambda_{w}\right) H_{\mu}
$$

$$
H(m, n)=\left(\epsilon^{\dagger \mu}(m) H_{\mu}\right) \cdot\left(\epsilon^{\dagger \nu}(n) H_{\nu}\right)^{\dagger} \equiv H_{m} H_{n}^{\dagger} .
$$

$$
H_{t}=\frac{1}{\sqrt{\boldsymbol{q}^{2}}}\left[\left(m_{1}^{2}-m_{2}^{2}\right) F_{+}\left(q^{2}\right)+q^{2} F_{-}\left(q^{2}\right)\right], \quad H_{0}=\frac{2 m_{1}\left|\mathbf{p}_{2}\right|}{\sqrt{\boldsymbol{q}^{2}}} F_{+}\left(q^{2}\right), \quad H_{ \pm}=0
$$

Helicity Amplitudes

(b) $B \rightarrow D^{*}$:

$$
H_{\lambda_{W} \lambda_{D^{*}}}=\epsilon^{\dagger \mu}\left(\lambda_{W}\right) \epsilon_{2}^{\dagger \alpha}\left(\lambda_{D^{*}}\right) \boldsymbol{h}_{\mu \alpha}
$$

$$
\begin{aligned}
H(m, n) & =\epsilon^{\dagger \mu}(m) \epsilon^{\nu}(n) H_{\mu \nu}=\epsilon^{\dagger \mu}(m) \epsilon^{\nu}(n) h_{\mu \alpha} \epsilon_{2}^{\dagger \alpha}(r) \epsilon_{2}^{\beta}(s) \delta_{r s} h_{\beta \nu}^{\dagger} \\
& =\epsilon^{\dagger \mu}(m) \epsilon_{2}^{\dagger \alpha}(r) h_{\mu \alpha} \cdot\left(\epsilon^{\dagger \nu}(n) \epsilon_{2}^{\dagger \beta}(s) h_{\nu \beta}\right)^{\dagger} \delta_{r s} \equiv H_{m r} H_{n r}^{\dagger}
\end{aligned}
$$

In addition to the $W_{\text {offshell }}$ polarization four-vectors $\epsilon^{\mu}\left(\lambda_{w}\right)$ one needs the polarization four-vectors $\epsilon_{2}^{\alpha}\left(\lambda_{D^{*}}\right)$ of the D^{*} :

$$
\begin{aligned}
\epsilon_{2}^{\alpha}(\pm) & =\frac{1}{\sqrt{2}}(0, \pm 1,-i, 0), \quad \epsilon_{2}^{\alpha}(0)=\frac{1}{m_{2}}\left(\left|p_{2}\right|, 0,0,-E_{2}\right) \\
H_{t} & \equiv H_{t 0}=\frac{1}{m_{1}+m_{2}} \frac{m_{1}\left|p_{2}\right|}{m_{2} \sqrt{q^{2}}}\left[\left(m_{1}^{2}-m_{2}^{2}\right)\left(A_{+}\left(q^{2}\right)-A_{0}\left(q^{2}\right)\right)+q^{2} A_{-}\left(q^{2}\right)\right] \\
H_{ \pm} & \equiv H_{ \pm \pm}=\frac{1}{m_{1}+m_{2}}\left[-\left(m_{1}^{2}-m_{2}^{2}\right) A_{0}\left(q^{2}\right) \pm 2 m_{1}\left|p_{2}\right| V\left(q^{2}\right)\right] \\
H_{0} & \equiv H_{00}=\frac{1}{m_{1}+m_{2}} \frac{1}{m_{2} \sqrt{q^{2}}}\left[\left(m_{2}^{2}-m_{1}^{2}\right)\left(m_{1}^{2}-m_{2}^{2}-q^{2}\right) A_{0}\left(q^{2}\right)+4 m_{1}^{2}\left|p_{2}\right|^{2} A_{+}\left(q^{2}\right)\right]
\end{aligned}
$$

Decay distribution in terms of Helicity amplitudes

$$
\begin{aligned}
& \frac{d \Gamma\left(B \rightarrow D^{(*)} \ell^{-} \bar{\nu}_{\ell}\right)}{d \boldsymbol{q}^{2} d \cos \theta}=\frac{G_{F}^{2}\left|V_{c b}\right|^{2}\left|\mathbf{p}_{2}\right| \boldsymbol{q}^{2}}{32(2 \pi)^{3} \boldsymbol{m}_{1}^{2}}\left(1-\frac{\boldsymbol{m}_{\ell}^{2}}{\boldsymbol{q}^{2}}\right)^{2} \times \\
& \times\left\{(1-\cos \theta)^{2}\left|H_{+}\right|^{2}+(1+\cos \theta)^{2}\left|H_{-}\right|^{2}+2 \sin ^{2} \theta\left|H_{0}\right|^{2}\right. \\
& \left.+\frac{\boldsymbol{m}_{\ell}^{2}}{\boldsymbol{q}^{2}}\left[\sin ^{2} \theta\left(\left|H_{+}\right|^{2}+\left|H_{-}\right|^{2}\right)+2\left|H_{t}-H_{0} \cos \theta\right|^{2}\right]\right\} \\
& \frac{d \Gamma\left(B \rightarrow D^{(*)} \ell^{-} \bar{\nu}_{\ell}\right)}{d \boldsymbol{q}^{2}}=\frac{G_{F}^{2}\left|V_{c b}\right|^{2}\left|\mathbf{p}_{2}\right| \boldsymbol{q}^{2}}{12(2 \pi)^{3} \boldsymbol{m}_{1}^{2}}\left(1-\frac{\boldsymbol{m}_{\ell}^{2}}{\boldsymbol{q}^{2}}\right)^{2} \times \\
& \times\left\{\left(\left|H_{+}\right|^{2}+\left|H_{-}\right|^{2}+\left|H_{0}\right|^{2}\right)\left(1+\frac{\boldsymbol{m}_{\ell}^{2}}{2 q^{2}}\right)+\frac{3 \boldsymbol{m}_{\ell}^{2}}{2 \boldsymbol{q}^{2}}\left|H_{t}\right|^{2}\right\}
\end{aligned}
$$

Form factors in the CCQM

Matrix elements are described by a set of Feynman diagrams which are convolutions of quark propagators and vertex functions.

$$
\begin{aligned}
& \left\langle D^{*}\left(p_{2}, \epsilon_{2}\right)\right| V^{\mu}-A^{\mu}\left|B\left(p_{1}\right)\right\rangle= \\
= & N_{c} g_{B} g_{D^{*}} \int \frac{d^{4} k}{(2 \pi)^{4} i} \widetilde{\Phi}_{B}\left(-\left(k+w_{13} p_{1}\right)^{2}\right) \widetilde{\Phi}_{D^{*}}\left(-\left(k+w_{23} p_{2}\right)^{2}\right) \\
\times & \operatorname{tr}\left[\gamma^{\mu}\left(1-\gamma_{5}\right) S_{1}\left(k+p_{1}\right) \gamma^{5} S_{3}(k) \not \notin 2_{\dagger} S_{2}\left(k+p_{2}\right)\right]
\end{aligned}
$$

- Use the Fock-Schwinger representation of the quark propagator:

$$
\begin{aligned}
S_{q}(k+w p) & =\frac{1}{m_{q}-k-w \not p}=\frac{m_{q}+k+w \not p}{m_{q}^{2}-(k+w p)^{2}} \\
& =\left(m_{q}+\not K+w \not p\right) \int_{0}^{\infty} d \alpha e^{-\alpha\left[m_{q}^{2}-(k+w p)^{2}\right]}
\end{aligned}
$$

- Nonlocal Gaussian-type vertex functions with fall-off behavior in Euclidean space to temper high energy divergence of quark loops

$$
\widetilde{\Phi}_{H}\left(-k^{2}\right)=\int d x e^{i k x} \Phi_{H}\left(x^{2}\right)=e^{k^{2} / \Lambda_{H}^{2}}
$$

where Λ_{H} characterizes the meson size.

- We imply that the loop integration k proceed over Euclidean space:

$$
k^{0} \rightarrow e^{i \frac{\pi}{2}} k_{4}=i k_{4}, \quad k^{2}=\left(k^{0}\right)^{2}-\vec{k}^{2} \rightarrow-k_{E}^{2} \leq 0
$$

- We simultaneously rotate all external momenta, i.e. $\boldsymbol{p}_{0} \rightarrow \boldsymbol{i} \boldsymbol{p}_{4}$ so that $\boldsymbol{p}^{2}=-\boldsymbol{p}_{E}^{2} \leq 0$. Then the quadratic form in the exponent becomes positive-definite,

$$
m_{q}^{2}-(k+w p)^{2}=m_{q}^{2}+\left(k_{E}+w p_{E}\right)^{2}>0
$$

and the integral over α is absolutely convergent.

Quark-Meson coupling

- Compositeness condition $Z_{H}=0$
Z_{H} - wave function renormalization constant of the meson H.

$$
Z_{H}^{1 / 2}=<H_{\text {bare }} \mid H_{\text {dressed }}>=0
$$

- $Z_{H}=1-\tilde{\Pi}^{\prime}\left(m_{H}^{2}\right)=0$ where $\tilde{\Pi}\left(p^{2}\right)$ is the meson mass operator.

$\Pi_{P}(p)=3 g_{P}^{2} \int \frac{d k}{(2 \pi)^{4} i} \widetilde{\Phi}_{P}^{2}\left(-k^{2}\right) \operatorname{tr}\left[S_{1}\left(k+w_{1} p\right) \gamma^{5} S_{2}\left(k-w_{2} p\right) \gamma^{5}\right]$
$\Pi_{V}(p)=g_{V}^{2}\left[g^{\mu \nu}-\frac{p^{\mu} p^{\nu}}{p^{2}}\right] \int \frac{d k}{(2 \pi)^{4} i} \widetilde{\Phi}_{V}^{2}\left(-k^{2}\right) \operatorname{tr}\left[S_{1}\left(k+w_{1} p\right) \gamma_{\mu} S_{2}\left(k-w_{2} p\right) \gamma_{\nu}\right]$

Infrared confinement \& Model parameters

One obtains

$$
\Pi=\int_{0}^{\infty} d^{n} \alpha F\left(\alpha_{1}, \ldots, \alpha_{n}\right)
$$

where F stands for the whole structure of a given diagram. The set of Schwinger parameters α_{i} can be turned into a simplex by introducing an additional t-integration via the identity $1=\int_{0}^{\infty} d t \delta\left(t-\sum_{i=1}^{n} \alpha_{i}\right)$

$$
\Pi=\int_{0}^{\infty} d t t^{n-1} \int_{0}^{1} d^{n} \alpha \delta\left(1-\sum_{i=1}^{n} \alpha_{i}\right) F\left(t \alpha_{1}, \ldots, t \alpha_{n}\right)
$$

Cut off the upper integration at $1 / \lambda^{2}$

$$
\Pi^{c}=\int_{0}^{1 / \lambda^{2}} d t t^{n-1} \int_{0}^{1} d^{n} \alpha \delta\left(1-\sum_{i=1}^{n} \alpha_{i}\right) F\left(t \alpha_{1}, \ldots, t \alpha_{n}\right)
$$

The infrared cut-off has removed all possible thresholds in the quark loop diagram.
MODEL PARAMETERS (all in GeV):

$m_{u / d}$	m_{c}	m_{b}	$\Lambda_{D^{*}}$	Λ_{D}	Λ_{B}	λ
0.241	1.67	5.04	1.53	1.60	1.96	0.181

Form factors

Form factors for $\bar{B}^{0} \rightarrow D$ (left) and $\bar{B}^{0} \rightarrow D^{*}$ (right) in the full momentum transfer range $0 \leq \boldsymbol{q}^{2} \leq \boldsymbol{q}_{\text {max }}^{2}=\left(\boldsymbol{m}_{\bar{B}^{0}}-\boldsymbol{m}_{\boldsymbol{D}^{(*)}}\right)^{2}$.

- Dipole interpolation

$$
F\left(q^{2}\right)=\frac{F(0)}{1-a s+b s^{2}}, \quad s=\frac{q^{2}}{m_{D^{(*)}}^{2}}
$$

- The dipole interpolation works very well for all form factors: dotted: calculated by FORTRAN solid: interpolation

The parameters of the dipole interpolation $F\left(q^{2}\right)=\frac{F(0)}{1-a s+b s^{2}}$:

	F_{+}	F_{-}	A_{0}	A_{+}	\boldsymbol{A}_{-}	\boldsymbol{V}
$\boldsymbol{F}(0)$	0.78	-0.36	1.62	0.67	-0.77	0.77
a	0.74	0.76	0.34	0.87	0.89	0.90
\boldsymbol{b}	0.038	0.046	-0.16	0.057	0.070	0.075
$F\left(\boldsymbol{q}_{\text {max }}^{2}\right)$	1.14	-0.53	1.91	0.99	-1.15	1.15
$F^{H Q L}\left(q_{\text {max }}^{2}\right)$	1.14	-0.54	1.99	1.12	-1.12	1.12

The FF ratio exhibits linear $\boldsymbol{q}^{\mathbf{2}}$ behavior
D. Becirevic, N. Kosnik, A. Tayduganov, PLB 716, 208 (2012).

$$
\begin{aligned}
F_{0}\left(q^{2}\right) & =F_{+}\left(q^{2}\right)+\frac{q^{2}}{P q} F_{-}\left(q^{2}\right) \\
\frac{F_{0}\left(q^{2}\right)}{F_{+}\left(q^{2}\right)} & =1-\alpha q^{2}
\end{aligned}
$$

where the slope $\alpha=0.020(1) \mathrm{GeV}^{-2}$ based on lattice results of the two FFs.

Our value: $\alpha=0.019 \mathrm{GeV}^{-2}$.

Motivation

- Testing the Standard Model
- CKM matrix element $\left|V_{c b}\right|$
- Form factors of hadronic transitions
- Possible NP beyond the SM

Ratios of branching fractions:

$$
R\left(D^{(*)}\right) \equiv \frac{\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{(*)} \tau^{-} \bar{\nu}_{\tau}\right)}{\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{(*)} \mu^{-} \bar{\nu}_{\mu}\right)}
$$

SM excess: 1.4σ and 2.5σ, respectively. (Before Belle-2019: 2.3 σ and 3.0 σ)

Motivation

$R(D)-R\left(D^{*}\right)$ combined: SM excess $\approx 3.1 \sigma$ (Before Belle-2019: $\approx 3.8 \sigma$)

Theoretical attempts to explain the excess:

- Specific NP models: two-Higgs-doublet models (2HDMs), Minimal Supersymmetric Standard Model (MSSM), Leptoquark models, etc.
- Impose general SM+NP effective Hamiltonian for transition $b \rightarrow c \ell \bar{\nu}$.

Possible New Physics in the decays $B \rightarrow D^{(*)} \tau \nu_{\tau}$

Effective Hamiltonian for the quark-level transition $b \rightarrow c \tau^{-} \bar{\nu}_{\tau}$

$$
\mathcal{H}_{\text {eff }}=2 \sqrt{2} G_{F} V_{c b}\left[\left(1+V_{L}\right) \mathcal{O}_{V_{L}}+V_{R} \mathcal{O}_{V_{R}}+S_{L} \mathcal{O}_{s_{L}}+S_{R} \mathcal{O}_{s_{R}}+T_{L} \mathcal{O}_{T_{L}}\right]
$$

where the four-fermion operators are written as

$$
\begin{aligned}
\mathcal{O}_{V_{L}} & =\left(\bar{c} \gamma^{\mu} P_{L} b\right)\left(\bar{\tau} \gamma_{\mu} P_{L} \nu_{\tau}\right) \Leftarrow \text { SM Operator } \\
\mathcal{O}_{V_{R}} & =\left(\bar{c} \gamma^{\mu} P_{R} b\right)\left(\bar{\tau} \gamma_{\mu} P_{L} \nu_{\tau}\right) \\
\mathcal{O}_{S_{L}} & =\left(\bar{c} P_{L} b\right)\left(\bar{\tau} P_{L} \nu_{\tau}\right) \\
\mathcal{O}_{S_{R}} & =\left(\bar{c} P_{R} b\right)\left(\bar{\tau} P_{L} \nu_{\tau}\right) \\
\mathcal{O}_{T_{L}} & =\left(\bar{c} \sigma^{\mu \nu} P_{L} b\right)\left(\bar{\tau} \sigma_{\mu \nu} P_{L} \nu_{\tau}\right)
\end{aligned}
$$

- Here, $\sigma_{\mu \nu}=i\left[\gamma_{\mu}, \gamma_{\nu}\right] / 2$
- $P_{L, R}=\left(1 \mp \gamma_{5}\right) / 2$ - the left and right projection operators
- $V_{L, R}, S_{L, R}$, and T_{L} - complex Wilson coefficients governing NP contributions.
- In the SM: $V_{L, R}=S_{L, R}=T_{L}=0$.
- Assumption: neutrino is always left handed and NP only affects leptons of the third generation.

Matrix element and NP form factors

$$
\begin{aligned}
\mathcal{M}= & \frac{G_{F} V_{c b}}{\sqrt{2}}\left[\left(1+V_{R}+V_{L}\right)\left\langle D^{(*)}\right| \bar{c} \gamma^{\mu} b\left|\bar{B}^{0}\right\rangle \bar{\tau} \gamma_{\mu}\left(1-\gamma^{5}\right) \nu_{\tau}\right. \\
& +\left(V_{R}-V_{L}\right)\left\langle D^{(*)}\right| \bar{c} \gamma^{\mu} \gamma^{5} b\left|\bar{B}^{0}\right\rangle \bar{\tau} \gamma_{\mu}\left(1-\gamma^{5}\right) \nu_{\tau} \\
& +\left(S_{R}+S_{L}\right)\left\langle D^{(*)}\right| \bar{c} b\left|\bar{B}^{0}\right\rangle \bar{\tau}\left(1-\gamma^{5}\right) \nu_{\tau} \\
& +\left(S_{R}-S_{L}\right)\left\langle D^{(*)}\right| \bar{c} \gamma^{5} b\left|\bar{B}^{0}\right\rangle \bar{\tau}\left(1-\gamma^{5}\right) \nu_{\tau} \\
& \left.+T_{L}\left\langle D^{(*)}\right| \bar{c} \sigma^{\mu \nu}\left(1-\gamma^{5}\right) b\left|\bar{B}^{0}\right\rangle \bar{\tau} \sigma_{\mu \nu}\left(1-\gamma^{5}\right) \nu_{\tau}\right]
\end{aligned}
$$

The axial and pseudoscalar hadronic matrix elements do not contribute to $\bar{B}^{0} \rightarrow D$; and the scalar hadronic matrix element does not contribute to $\bar{B}^{0} \rightarrow D^{*}$.
We need more form factors to describe NP operators:

$$
\begin{aligned}
\left\langle D\left(p_{2}\right)\right| \bar{c} b\left|\bar{B}^{0}\left(p_{1}\right)\right\rangle= & \left(m_{1}+m_{2}\right) F^{S}\left(q^{2}\right), \\
\left\langle D\left(p_{2}\right)\right| \bar{c} \sigma^{\mu \nu}\left(1-\gamma^{5}\right) \boldsymbol{b}\left|\bar{B}^{0}\left(p_{1}\right)\right\rangle= & \frac{i F^{T}\left(q^{2}\right)}{m_{1}+m_{2}}\left(P^{\mu} q^{\nu}-P^{\nu} q^{\mu}+i \varepsilon^{\mu \nu P q}\right), \\
& \left\langle D^{*}\left(p_{2}\right)\right| \bar{c} \gamma^{5} b\left|\bar{B}^{0}\left(p_{1}\right)\right\rangle=\epsilon_{2 \alpha}^{\dagger} P^{\alpha} G^{S}\left(q^{2}\right), \\
\left\langle D^{*}\left(p_{2}\right)\right| \bar{c} \sigma^{\mu \nu}\left(1-\gamma^{5}\right) b\left|\bar{B}^{0}\left(p_{1}\right)\right\rangle=- & i \epsilon_{2 \alpha}^{\dagger}\left[\left(P^{\mu} g^{\nu \alpha}-P^{\nu} g^{\mu \alpha}+i \varepsilon^{P \mu \nu \alpha}\right) G_{1}^{T}\left(q^{2}\right)\right. \\
& +\left(q^{\mu} g^{\nu \alpha}-q^{\nu} g^{\mu \alpha}+i \varepsilon^{q \mu \nu \alpha}\right) G_{2}^{T}\left(q^{2}\right) \\
& \left.+\left(P^{\mu} q^{\nu}-P^{\nu} q^{\mu}+i \varepsilon^{P q \mu \nu}\right) P^{\alpha} \frac{G_{0}^{T}\left(q^{2}\right)}{\left(m_{1}+m_{2}\right)^{2}}\right]
\end{aligned}
$$

Form factors for NP operators

NP form factors for $\bar{B}^{0} \rightarrow D$ (left) and $\bar{B}^{0} \rightarrow D^{*}$ (right) in the full momentum transfer range $0 \leq \boldsymbol{q}^{2} \leq \boldsymbol{q}_{\text {max }}^{2}=\left(\boldsymbol{m}_{\bar{B}^{0}}-\boldsymbol{m}_{D^{(*)}}\right)^{2}$.

The parameters of the dipole interpolation:

	F^{S}	F^{T}	G^{S}	G_{0}^{T}	G_{1}^{T}	G_{2}^{T}
$F(0)$	0.80	0.77	-0.50	-0.073	0.73	-0.37
a	0.22	0.76	0.87	1.23	0.90	0.88
b	-0.098	0.043	0.060	0.33	0.074	0.064
$F\left(q_{\max }^{2}\right)$	0.89	1.11	-0.73	-0.13	1.10	-0.55
$F^{H Q L}\left(q_{\max }^{2}\right)$	0.88	1.14	-0.62	0	1.12	-0.50

Form factors comparison

HQET form factors taken from a recent paper by
Alonso-Kobach-Camalich [arXiv:1602.07671], here $F_{0}\left(\boldsymbol{q}^{2}\right)=F_{+}\left(\boldsymbol{q}^{2}\right)+\frac{\boldsymbol{q}^{2}}{m_{1}^{2}-m_{2}^{2}} F_{-}\left(\boldsymbol{q}^{2}\right)$.
(Caprini-Lellouch-Neubert parametrization, except for $F_{0}\left(q^{2}\right)$, where they used the Bourrely-Caprini-Lellouch parametrization)

Ratios of branching fractions

$$
R_{D^{(*)}}\left(\boldsymbol{q}^{2}\right)=\left(\frac{\boldsymbol{q}^{2}-\boldsymbol{m}_{\tau}^{2}}{\boldsymbol{q}^{2}-\boldsymbol{m}_{\mu}^{2}}\right)^{2} \frac{\mathcal{H}_{\text {tot }}^{D^{(*)}}}{\sum_{n}\left|H_{n}\right|^{2}+\delta_{\mu}\left(\sum_{n}\left|H_{n}\right|^{2}+3\left|H_{t}\right|^{2}\right)}
$$

where

$$
\begin{aligned}
\mathcal{H}_{t o t}^{D}= & \left|1+g_{V}\right|^{2}\left[\left|H_{0}\right|^{2}+\delta_{\tau}\left(\left|H_{0}\right|^{2}+3\left|H_{t}\right|^{2}\right)\right]+\frac{3}{2}\left|g_{S}\right|^{2}\left|H_{P}^{S}\right|^{2} \\
& +3 \sqrt{2 \delta_{\tau}} \operatorname{Re} g_{S} H_{P}^{S} H_{t}+8\left|T_{L}\right|^{2}\left(1+4 \delta_{\tau}\right)\left|H_{T}\right|^{2}+12 \sqrt{2 \delta_{\tau}} \operatorname{Re} T_{L} H_{0} H_{T}, \\
\mathcal{H}_{t o t}^{D^{*}}= & \left(\left|1+V_{L}\right|^{2}+\left|V_{R}\right|^{2}\right)\left[\sum_{n}\left|H_{n}\right|^{2}+\delta_{\tau}\left(\sum_{n}\left|H_{n}\right|^{2}+3\left|H_{t}\right|^{2}\right)\right]+\frac{3}{2}\left|g_{P}\right|^{2}\left|H_{V}^{S}\right|^{2} \\
& -2 \operatorname{Re} V_{R}\left[\left(1+\delta_{\tau}\right)\left(\left|H_{0}\right|^{2}+2 H_{+} H_{-}\right)+3 \delta_{\tau}\left|H_{t}\right|^{2}\right]-3 \sqrt{2 \delta_{\tau}} \operatorname{Reg}_{P} H_{V}^{S} H_{t} \\
& +8\left|T_{L}\right|^{2}\left(1+4 \delta_{\tau}\right) \sum_{n}\left|H_{T}^{n}\right|^{2}-12 \sqrt{2 \delta_{\tau}} \operatorname{Re} T_{L} \sum_{n} H_{n} H_{T}^{n} .
\end{aligned}
$$

Here, $\delta_{\ell}=m_{\ell}^{2} / 2 q^{2}, g_{V} \equiv V_{L}+V_{R}, g_{s} \equiv S_{L}+S_{R}, g_{P} \equiv S_{L}-S_{R}$, and the index n runs through ($0,+,-$).

Assuming that besides the SM contribution, only one of the NP operators is switched on at a time, and NP only affects the tau modes. ($+\mathbf{1 0 \%}$ theor. error)

The allowed regions of the Wilson coefficients $V_{L, R}, S_{L}$, and T_{L} within 1σ (green, dark) and 2σ (yellow, light). The best-fit value in each case is denoted with the symbol $*$. The coefficient S_{R} is disfavored at 2σ and therefore is not shown here. 25/62

The $\bar{B}^{0} \rightarrow D^{*+}\left(\rightarrow \boldsymbol{D}^{0} \pi^{+}\right) \tau^{-} \bar{\nu}_{\tau}$ four-fold distribution

One has

$$
\frac{d^{4} \Gamma\left(\bar{B}^{0} \rightarrow D^{*+}\left(\rightarrow D^{0} \pi^{+}\right) \tau^{-} \bar{\nu}_{\tau}\right)}{d q^{2} d \cos \theta d \chi d \cos \theta^{*}}=\frac{9}{8 \pi}|N|^{2} J\left(\theta, \theta^{*}, \chi\right)
$$

where

$$
|N|^{2}=\frac{G_{F}^{2}\left|V_{c b}\right|^{2}\left|\mathbf{p}_{2}\right| q^{2} v^{2}}{(2 \pi)^{3} 12 m_{1}^{2}} \mathcal{B}\left(D^{*} \rightarrow D \pi\right)
$$

The three-angle distribution

The full angular distribution $J\left(\theta, \theta^{*}, \chi\right)$ is written as

$$
\begin{aligned}
& J\left(\theta, \theta^{*}, \chi\right) \\
&= J_{1 s} \sin ^{2} \theta^{*}+J_{1 c} \cos ^{2} \theta^{*}+\left(J_{2 s} \sin ^{2} \theta^{*}+J_{2 c} \cos ^{2} \theta^{*}\right) \cos 2 \theta \\
&+J_{3} \sin ^{2} \theta^{*} \sin ^{2} \theta \cos 2 \chi+J_{4} \sin 2 \theta^{*} \sin 2 \theta \cos \chi \\
&+J_{5} \sin 2 \theta^{*} \sin \theta \cos \chi+\left(J_{6 s} \sin ^{2} \theta^{*}+J_{6 c} \cos ^{2} \theta^{*}\right) \cos \theta \\
&+J_{7} \sin 2 \theta^{*} \sin \theta \sin \chi+J_{8} \sin 2 \theta^{*} \sin 2 \theta \sin \chi+J_{9} \sin ^{2} \theta^{*} \sin ^{2} \theta \sin 2 \chi
\end{aligned}
$$

where $J_{i(a)}(i=1, \ldots, 9 ; a=s, c)$ are coefficient functions depending on q^{2}, the form factors and the NP couplings.
a large set of observables which can help probe NP in the decay. First, by integrating Eq. (26) over all angles one obtains

$$
\frac{d \Gamma\left(\bar{B}^{0} \rightarrow D^{*} \tau^{-} \bar{\nu}_{\tau}\right)}{d q^{2}}=|N|^{2} J_{\text {tot }}=|N|^{2}\left(J_{L}+J_{T}\right)
$$

where J_{L} and J_{T} are the longitudinal and transverse polarization amplitudes of the D^{*} meson, given by

$$
J_{L}=3 J_{1 c}-J_{2 c}, \quad J_{T}=2\left(3 J_{1 s}-J_{2 s}\right)
$$

It is interesting to note that unlike the vector and scalar operators, which tend to increase both ratios, the tensor operator can lead to a decrease of the ratio $R\left(D^{*}\right)$ for $q^{2} \gtrsim 8 \mathrm{GeV}^{2}$. Moreover, while the ratio $R\left(D^{*}\right)$ is minimally sensitive to the scalar coupling S_{L} the ratio $R(D)$ shows maximal sensitivity to S_{L}. These behaviors can help discriminate between different NP operators.

$\cos \theta$ distribution, forward-backward asymmetry \& lepton-side convexity

The normalized form of the $\cos \theta$ distribution reads

$$
\tilde{J}(\theta)=\frac{a+b \cos \theta+c \cos ^{2} \theta}{2(a+c / 3)} .
$$

The linear coefficient $b / 2(a+c / 3)$ can be projected out by defining a forward-backward asymmetry given by

$$
\mathcal{A}_{F B}\left(q^{2}\right)=\frac{\left(\int_{0}^{1}-\int_{-1}^{0}\right) d \cos \theta d \Gamma / d \cos \theta}{\left(\int_{0}^{1}+\int_{-1}^{0}\right) d \cos \theta d \Gamma / d \cos \theta}=\frac{b}{2(a+c / 3)}=\frac{3}{2} \frac{J_{6 c}+2 J_{6 s}}{J_{t o t}}
$$

where $J_{\text {tot }}=3 J_{1 c}+6 J_{1 s}-J_{2 c}-2 J_{2 s}$.
The quadratic coefficient $c / 2(a+c / 3)$ is obtained by taking the second derivative of $\widetilde{J}(\theta)$. Accordingly, we define a convexity parameter as follows:

$$
C_{F}^{\tau}\left(q^{2}\right)=\frac{d^{2} \widetilde{J}(\theta)}{d(\cos \theta)^{2}}=\frac{c}{a+c / 3}=\frac{6\left(J_{2 c}+2 J_{2 s}\right)}{J_{\mathrm{tot}}}
$$

Forward-backward asymmetry $\mathcal{A}_{F B}\left(\boldsymbol{q}^{2}\right)$

V_{L} does not effect $\mathcal{A}_{\text {FB }}$ in both decays since it stands before the SM operator and drops out in the definition of the observable. For $\bar{B}^{0} \rightarrow D^{*}$ transition, $\mathcal{O}_{V_{R}}$, $\mathcal{O}_{S_{L}}$, and $\mathcal{O}_{T_{L}}$ behave mostly similarly: they tend to decrease the FBA and shift the zero-crossing point to greater values than the SM one. However, $\mathcal{O}_{T_{L}}$ can also increase the asymmetry in the high- q^{2} region. For $\bar{B}^{0} \rightarrow D, \mathcal{O} v_{R}$ does not affect $\mathcal{A}_{F B}, \mathcal{O}_{T_{L}}$ tends to lower $\mathcal{A}_{F B}$, and the scalar operator $\mathcal{O}_{s_{L}}$ thoroughly changes $\mathcal{A}_{\text {FB }}$: it can increase the FBA by up to 200% and implies a zero-crossing point, which is impossible in the SM . This unique effect of $\mathcal{O}_{S_{L}}$ would clearly distinguish it from the other NP operators.

Lepton-side convexity $C_{F}^{\tau}\left(\boldsymbol{q}^{2}\right)$

While $C_{F}^{\tau}(D)$ is only sensitive to $\mathcal{O}_{T_{L}}, C_{F}^{\tau}\left(D^{*}\right)$ is sensitive to $\mathcal{O}_{S_{L}}, \mathcal{O}_{V_{R}}$, and $\mathcal{O}_{T_{L}}$. Unlike $\mathcal{O}_{S_{L}}$, which can only increase $C_{F}^{\tau}\left(D^{*}\right)$, the operator $\mathcal{O}_{T_{L}}$ can only lower the parameter. It is worth mentioning that $C_{F}^{\tau}(D)$ and $C_{F}^{\tau}\left(D^{*}\right)$ are extremely sensitive to $\mathcal{O}_{T_{L}}$: it can change $C_{F}^{\tau}\left(D^{(*)}\right)$ by a factor of 4 at $q^{2} \approx 7 \mathrm{GeV}^{2}$.

$\boldsymbol{\operatorname { c o s }} \theta^{*}$ distribution and hadron-side convexity parameter

The normalized form of the $\cos \theta^{*}$ distribution reads
$\widetilde{J}\left(\theta^{*}\right)=\left(a^{\prime}+c^{\prime} \cos ^{2} \theta^{*}\right) / 2\left(a^{\prime}+c^{\prime} / 3\right)$, which can again be characterized by its convexity parameter

$$
C_{F}^{h}\left(q^{2}\right)=\frac{d^{2} \widetilde{J}\left(\theta^{*}\right)}{d\left(\cos \theta^{*}\right)^{2}}=\frac{c^{\prime}}{a^{\prime}+c^{\prime} / 3}=\frac{3 J_{1 c}-J_{2 c}-3 J_{1 s}+J_{2 s}}{J_{\text {tot }} / 3} .
$$

The $\cos \theta^{*}$ distribution can be written as

$$
\tilde{J}\left(\theta^{*}\right)=\frac{3}{4}\left(2 F_{L}\left(q^{2}\right) \cos ^{2} \theta^{*}+F_{T}\left(q^{2}\right) \sin ^{2} \theta^{*}\right)
$$

where $F_{L}\left(q^{2}\right)$ and $F_{T}\left(q^{2}\right)$ are the polarization fractions of the D^{*} meson and are defined as

$$
F_{L}\left(q^{2}\right)=\frac{J_{L}}{J_{L}+J_{T}}, \quad F_{T}\left(q^{2}\right)=\frac{J_{T}}{J_{L}+J_{T}}, \quad F_{L}\left(q^{2}\right)+F_{T}\left(q^{2}\right)=1
$$

The hadron-side convexity parameter and the polarization fractions of the D^{*} meson are related by

$$
C_{F}^{h}\left(q^{2}\right)=\frac{3}{2}\left(2 F_{L}\left(q^{2}\right)-F_{T}\left(q^{2}\right)\right)=\frac{3}{2}\left(3 F_{L}\left(q^{2}\right)-1\right) .
$$

Hadron-side convexity parameter $\boldsymbol{C}_{F}^{h}\left(\boldsymbol{q}^{2}\right)$

Each NP operator can change $C_{F}^{h}\left(q^{2}\right)$ in a unique way:

- $\mathcal{O} V_{R}$ almost does nothing to the parameter
- $\mathcal{O}_{s_{L}}$ increases the parameter by about 50% nearly in the whole range of $\boldsymbol{q}^{\mathbf{2}}$
- the tensor operator $\mathcal{O}_{T_{L}}$ lowers the parameter (by up to 200% at low q^{2}), and it also allows negative values of $C_{F}^{h}\left(q^{2}\right)$, which are impossible in the SM

Update: First measurement of $\boldsymbol{F}_{L}^{D^{*}}$ in the decay $\boldsymbol{B} \rightarrow \boldsymbol{D}^{*} \boldsymbol{\tau} \nu_{\boldsymbol{\tau}}$ from Belle

Our Analysis: 2016; Belle measurement: 2019

- Belle Collaboration A. Abdesselam et al., arXiv:1903.03102
$F_{L}^{D^{*}}\left(B \rightarrow D^{*} \tau \nu_{\tau}\right)=0.60 \pm 0.08$ (stat) ± 0.04 (sys)
Agrees with SM within 1.7σ
- Recent predictions:

$$
\begin{aligned}
& \mathbf{0 . 4 4 1} \pm \mathbf{0 . 0 0 6} \\
& \text { z.-R. Huang et al., PRD } 98,095018 \text { (2018) } \\
& \mathbf{0 . 4 5 7} \pm \mathbf{0 . 0 1 0}
\end{aligned} \text { s. Bhattacharya et al., arXiv:1805.08222 }
$$

- First prediction (to our knowledge):
0.46 M.A. Ivanov, J.G. Körner, C.T. Tran, PRD92 (2015), 114022
- Crosscheck of Belle:
$F_{L}^{D^{*}}\left(B \rightarrow D^{*} \tau \nu_{e}\right)=0.56 \pm 0.02$
0.54 (the only one) M.A. Ivanov, J.G. Körner, C.T. Tran, PRD92 (2015), 114022

χ distribution and trigonometric moments

The normalized χ distribution reads

$$
\tilde{J}^{(I)}(\chi)=\frac{1}{2 \pi}\left[1+A_{C}^{(1)}\left(q^{2}\right) \cos 2 \chi+A_{T}^{(1)}\left(q^{2}\right) \sin 2 \chi\right]
$$

where $A_{C}^{(1)}\left(q^{2}\right)=4 J_{3} / J_{\text {tot }}$ and $A_{T}^{(1)}\left(q^{2}\right)=4 J_{9} / J_{\text {tot }}$. Besides, one can also define other angular distributions in the angular variable χ as follows

$$
\begin{gathered}
J^{(I I)}(\chi)=\left[\int_{0}^{1}-\int_{-1}^{0}\right] d \cos \theta^{*} \int_{-1}^{1} d \cos \theta \frac{d^{4} \Gamma}{d q^{2} d \cos \theta d \chi d \cos \theta^{*}}, \\
J^{(I I I)}(\chi)=\left[\int_{0}^{1}-\int_{-1}^{0}\right] d \cos \theta^{*}\left[\int_{0}^{1}-\int_{-1}^{0}\right] d \cos \theta \frac{d^{4} \Gamma}{d q^{2} d \cos \theta d \chi d \cos \theta^{*}} .
\end{gathered}
$$

The normalized forms of these distributions read

$$
\begin{aligned}
\tilde{J}^{(I I)}(\chi) & =\frac{1}{4}\left[A_{C}^{(2)}\left(q^{2}\right) \cos \chi+A_{T}^{(2)}\left(q^{2}\right) \sin \chi\right] \\
\tilde{J}^{(I I I)}(\chi) & =\frac{2}{3 \pi}\left[A_{C}^{(3)}\left(q^{2}\right) \cos \chi+A_{T}^{(3)}\left(q^{2}\right) \sin \chi\right]
\end{aligned}
$$

where

$$
A_{C}^{(2)}\left(q^{2}\right)=\frac{3 J_{5}}{J_{\mathrm{tot}}}, \quad A_{T}^{(2)}\left(q^{2}\right)=\frac{3 J_{7}}{J_{\mathrm{tot}}}, \quad A_{C}^{(3)}\left(q^{2}\right)=\frac{3 J_{4}}{J_{\mathrm{tot}}}, \quad A_{T}^{(3)}\left(q^{2}\right)=\frac{3 J_{8}}{J_{\mathrm{tot}}}
$$

Another method to project the coefficient functions $J_{i}(i=3,4,5,7,8,9)$ out from the full angular decay distribution is to take the appropriate trigonometric moments of the normalized decay distribution $\widetilde{J}\left(\theta^{*}, \theta, \chi\right)$. The trigonometric moments are defined by

$$
w_{i}=\int d \cos \theta d \cos \theta^{*} d \chi M_{i}\left(\theta^{*}, \theta, \chi\right) \widetilde{J}\left(\theta^{*}, \theta, \chi\right) \equiv\left\langle M_{i}\left(\theta^{*}, \theta, \chi\right)\right\rangle
$$

where $M_{i}\left(\theta^{*}, \theta, \chi\right)$ defines the trigonometric moment that is being taken. One finds

$$
\begin{aligned}
W_{T}\left(q^{2}\right) & \equiv\langle\cos 2 \chi\rangle=\frac{2 J_{3}}{J_{\mathrm{tot}}}=\frac{1}{2} A_{C}^{(1)}\left(q^{2}\right) \\
W_{I T}\left(q^{2}\right) & \equiv\langle\sin 2 \chi\rangle=\frac{2 J_{9}}{J_{\mathrm{tot}}}=\frac{1}{2} A_{T}^{(1)}\left(q^{2}\right) \\
W_{A}\left(q^{2}\right) & \equiv\left\langle\sin \theta \cos \theta^{*} \cos \chi\right\rangle=\frac{3 \pi}{8} \frac{J_{5}}{J_{\mathrm{tot}}}=\frac{\pi}{8} A_{C}^{(2)}\left(q^{2}\right) \\
W_{I A}\left(q^{2}\right) & \equiv\left\langle\sin \theta \cos \theta^{*} \sin \chi\right\rangle=\frac{3 \pi}{8} \frac{J_{7}}{J_{\mathrm{tot}}}=\frac{\pi}{8} A_{T}^{(2)}\left(q^{2}\right) \\
W_{I}\left(q^{2}\right) & \equiv\left\langle\cos \theta \cos \theta^{*} \cos \chi\right\rangle=\frac{9 \pi^{2}}{128} \frac{J_{4}}{J_{\mathrm{tot}}}=\frac{3 \pi^{2}}{128} A_{C}^{(3)}\left(q^{2}\right) \\
W_{I I}\left(q^{2}\right) & \equiv\left\langle\cos \theta \cos \theta^{*} \sin \chi\right\rangle=\frac{9 \pi^{2}}{128} \frac{J_{8}}{J_{\mathrm{tot}}}=\frac{3 \pi^{2}}{128} A_{T}^{(3)}\left(q^{2}\right)
\end{aligned}
$$

Certain combinations of angular observables where the form factor dependence drops out (at least in most NP scenarios).

$$
H_{T}^{(1)}=\frac{\sqrt{2} J_{4}}{\sqrt{-J_{2 c}\left(2 J_{2 s}-J_{3}\right)}},
$$

which equals to one not only in the SM but also in all NP scenarios except the tensor one. Therefore $H_{T}^{(1)}\left(q^{2}\right)$ plays a prominent role in confirming the appearance of the tensor operator $\mathcal{O}_{T_{L}}$ in the decay $\bar{B}^{0} \rightarrow D^{*} \tau^{-} \bar{\nu}_{\tau}$.

The black dashed line is the SM prediction. The red dotted line, which is almost identical to the SM one, represents the best fit value of T_{L}. The blue dot-dashed line and the red line are the prediction for $T_{L}=0.21 i$ and $T_{L}=0.18+0.27 i$, respectively.

Tau polarization in the decays $\bar{B}^{0} \rightarrow \boldsymbol{D}^{(*)} \boldsymbol{\tau}^{-} \overline{\boldsymbol{\nu}}_{\boldsymbol{\tau}}$

- First measurement by Belle: [arXiv:1612.00529]

$$
\left.\left.P_{L}^{\tau}=-0.38 \pm 0.51 \text { (stat.) }\right)_{-0.16}^{+0.21} \text { (syst.) } \quad \text { (in } \bar{B}^{0} \rightarrow D^{*} \tau^{-} \bar{\nu}_{\tau}\right)
$$

- We define three orthogonal unit vectors as follows:

$$
\vec{e}_{L}=\frac{\overrightarrow{\boldsymbol{p}}_{\tau}}{\left|\overrightarrow{\boldsymbol{p}}_{\tau}\right|}, \quad \overrightarrow{\boldsymbol{e}}_{N}=\frac{\overrightarrow{\boldsymbol{p}}_{\tau} \times \overrightarrow{\boldsymbol{p}}_{D^{(*)}}}{\left|\overrightarrow{\boldsymbol{p}}_{\tau} \times \overrightarrow{\boldsymbol{p}}_{D^{(*)}}\right|}, \quad \quad \vec{e}_{T}=\overrightarrow{\boldsymbol{e}}_{N} \times \vec{e}_{L},
$$

where $\overrightarrow{\boldsymbol{p}}_{\boldsymbol{\tau}}$ and $\overrightarrow{\boldsymbol{p}}_{\boldsymbol{D}^{(*)}}$ - three-momenta of the $\boldsymbol{\tau}^{-}$and the mesons in the W - rest frame.

- Longitudinal (L), normal (N), and transverse (T) polarization four-vectors of the τ^{-}in the W^{-}rest frame:

$$
s_{L}^{\mu}=\left(\frac{\left|\overrightarrow{\boldsymbol{p}}_{\tau}\right|}{\boldsymbol{m}_{\tau}}, \frac{E_{\tau}}{\boldsymbol{m}_{\tau}} \frac{\overrightarrow{\boldsymbol{p}}_{\tau}}{\left|\overrightarrow{\boldsymbol{p}}_{\tau}\right|}\right), \quad s_{N}^{\mu}=\left(0, \vec{e}_{N}\right), \quad s_{\tau}^{\mu}=\left(0, \vec{e}_{T}\right)
$$

- The tau polarization components:

$$
P_{i}\left(q^{2}\right)=\frac{d \Gamma\left(s_{i}^{\mu}\right) / d q^{2}-d \Gamma\left(-s_{i}^{\mu}\right) / d q^{2}}{d \Gamma\left(s_{i}^{\mu}\right) / d q^{2}+d \Gamma\left(-s_{i}^{\mu}\right) / d q^{2}}, \quad i=L, N, T, \quad q^{\mu}=p_{B}^{\mu}-p_{D^{(*)}}^{\mu}
$$

(Note that $P_{N}\left(q^{2}\right)=0$ in the SM.)

Lepton polarization: $\bar{B}^{0} \rightarrow D^{(*)} e^{-} \bar{\nu}_{e}$ vs. $\bar{B}^{0} \rightarrow D^{(*)} \tau^{-} \bar{\nu}_{\tau}$

$B \rightarrow D \ell^{-} \bar{\nu}_{\ell}:$ for e^{-}the curves reflect the chiral limit of a massless lepton in which the lepton is purely left-handed, i.e. one has $P_{L}^{\ell}=-1, P_{T}^{\ell}=0$, and $\left|\vec{P}^{\ell}\right|=1$. For τ, P_{T}^{τ} is large and positive and dominates the total polarization. $B \rightarrow D^{*} \ell^{-} \bar{\nu}_{\ell}$: When \boldsymbol{q}^{2} increases, the longitudinal component becomes larger in magnitude while the transverse polarization becomes smaller. At zero recoil the transverse polarization of the charged lepton P_{T}^{τ} tends to zero. The total polarization of the τ has an almost flat behavior with $|\overrightarrow{\boldsymbol{P}} \ell| \sim 0.7$. The overall picture: the polarization is mostly transverse at threshold and turns to longitudinal as \boldsymbol{q}^{2} reaches the zero-recoil point.

Result for tau polarization in the SM
$P_{L}-P_{T}$ correlation: $\sin \theta_{O D} / \cos \theta_{O D}=P_{T} / P_{L}$. Dashed line $-B \rightarrow D^{*}$, solid line - $B \rightarrow D$. The arrows show the direction of increasing q^{2}. The dots on the dashed line stand for $q^{2}=4,6,8,10 \mathrm{GeV}^{2}$. The dots on the solid line $-q^{2}=4$, 8, 10, 11.5 GeV ${ }^{2}$

Longitudinal, transverse, and normal polarization of τ^{-}in $\bar{B}^{0} \rightarrow \boldsymbol{D} \tau^{-} \bar{\nu}_{\tau}$

- Thick black dashed lines: SM prediction
- Gray bands include NP effects corresponding to the 2σ allowed regions
- Red dotted lines represent the best-fit values of the NP couplings

Longitudinal, transverse, and normal polarization of τ^{-}in $\bar{B}^{0} \rightarrow D^{*} \tau^{-} \bar{\nu}_{\tau}$

$\boldsymbol{q}^{\mathbf{2}}$ averages of the polarization components and the total polarization.
One can also calculate the average polarizations over the whole \boldsymbol{q}^{2} region. For example, the average longitudinal polarization $\left\langle P_{L}^{D}\right\rangle$ is calculated by:

$$
\left\langle P_{L}^{D}\right\rangle=\frac{\int d q^{2} C\left(q^{2}\right)\left(P_{L}^{D}\left(q^{2}\right) \mathcal{H}_{\mathrm{tot}}^{D}\right)}{\int d q^{2} C\left(q^{2}\right) \mathcal{H}_{\mathrm{tot}}^{D}}
$$

where $C\left(q^{2}\right)=\left|p_{2}\right|\left(q^{2}-m_{\tau}^{2}\right)^{2} / q^{2}$ is the q^{2}-dependent piece of the phase-space factor.

$\bar{B}^{0} \rightarrow$ D				
	$\left\langle P_{L}^{D}\right\rangle$	$\left\langle P_{T}^{D}\right\rangle$	$\left\langle P_{N}^{D}\right\rangle$	$<\left\|\overrightarrow{\boldsymbol{P}}^{\boldsymbol{D}}\right\|>$
SM (CCQM)	0.33	0.84	0	0.91
S_{L}	$(0.36,0.67)$	($-0.68,0.33$)	($-0.76,0.76$)	$(0.89,0.96)$
T_{L}	$(0.13,0.31)$	$(0.78,0.83)$	(-0.17, 0.17)	(0.79, 0.90)
$\bar{B}^{0} \rightarrow D^{*}$				
	$\left.<P_{L}^{D^{*}}\right\rangle$	$\left.<P_{T}^{D^{*}}\right\rangle$	$<P_{N}^{D^{*}}>$	$<\left\|\overrightarrow{\boldsymbol{P}}^{D^{*}}\right\|>$
SM (CCQM)	-0.50	0.46	0	0.71
S_{L}	(-0.40, -0.14)	(0.47, 0.62)	($-0.20,0.20$)	(0.69, 0.70)
T_{L}	$(-0.36,0.24)$	($-0.61,0.26$)	($-0.17,0.17$)	(0.23, 0.69)
V_{R}	-0.50	$(0.32,0.43)$	0	$(0.48,0.67)$

The predicted intervals for the polarizations in the presence of NP are given in correspondence with the 2σ allowed regions of the NP couplings

Analyzing the polarization of the tau through its decays

As analyzing modes for the τ^{-}polarization we can consider the four dominant τ^{-}decay modes

$$
\begin{array}{cccccc}
\tau^{-} & \rightarrow & \pi^{-} \nu_{\tau} & (10.83 \%), & \tau^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu} \nu_{\tau} & (17.41 \%) \\
\tau^{-} & \rightarrow & \rho^{-} \nu_{\tau} & (25.52 \%), & \tau^{-} \rightarrow e^{-} \bar{\nu}_{e} \nu_{\tau} & (17.83 \%)
\end{array}
$$

In \boldsymbol{W} rest frame, $\boldsymbol{\theta}_{\boldsymbol{\tau}}$ - angle between $\overrightarrow{\boldsymbol{p}}_{\boldsymbol{\tau}}$ and the direction opposite to the direction of the $D^{(*)}$

In τ rest frame, $\boldsymbol{\theta}_{\boldsymbol{d}}$ - angle between \boldsymbol{d}^{-} and the longitudinal polarization axis, which is chosen to coincide with the direction of the τ in the W rest frame.
χ - azimuthal angle.

- In terms of the angles $\theta_{\boldsymbol{d}}$ and χ, the decay distribution is written as follows:

$$
\begin{aligned}
& \frac{d \Gamma}{d q^{2} d \cos \theta_{d} d \chi / 2 \pi}= \\
= & \mathcal{B}_{d} \frac{d \Gamma}{d q^{2}} \frac{1}{2}\left[1+A_{d}\left(P_{T}\left(q^{2}\right) \sin \theta_{d} \cos \chi+P_{N}\left(q^{2}\right) \sin \theta_{d} \sin \chi+P_{L}\left(q^{2}\right) \cos \theta_{d}\right)\right] .
\end{aligned}
$$

Through an analysis of this decay distribution one can determine the components of the \boldsymbol{q}^{2}-dependent polarization vector $\vec{P}\left(q^{2}\right)=\left(P_{T}\left(q^{2}\right), P_{N}\left(q^{2}\right), P_{L}\left(q^{2}\right)\right)$.

- Upon χ integration, one obtains:

$$
\frac{d \Gamma}{d q^{2} d \cos \theta_{d}}=\mathcal{B}_{d} \frac{d \Gamma}{d q^{2}} \frac{1}{2}\left(1+A_{d} P_{L}\left(q^{2}\right) \cos \theta_{d}\right)
$$

with a polar analyzing power of $\boldsymbol{A}_{\boldsymbol{d}}$

- Upon $\cos \theta_{\boldsymbol{d}}$ integration one has:

$$
\frac{d \Gamma}{d q^{2} d \chi / 2 \pi}=\mathcal{B}_{d} \frac{d \Gamma}{d q^{2}}\left(1+A_{d} \frac{\pi}{4}\left(P_{T}\left(q^{2}\right) \cos \chi+P_{N}\left(q^{2}\right) \sin \chi\right)\right)
$$

with an azimuthal analyzing power of $A_{d} \pi / 4$.

For the decay $\bar{B}^{0} \rightarrow D^{(*)} \tau^{-}\left(\rightarrow \rho^{-} \nu_{\tau}\right) \bar{\nu}_{\tau}$ one has
$\frac{d \Gamma_{\rho}}{d q^{2} d \cos \theta_{\rho} d \chi / 2 \pi}=\mathcal{B}_{\rho} \frac{d \Gamma}{d q^{2}} \frac{1}{2}\left[1+\frac{m_{\tau}^{2}-2 m_{\rho}^{2}}{m_{\tau}^{2}+2 m_{\rho}^{2}}\left(P_{T}\left(q^{2}\right) \sin \theta_{\rho} \cos \chi+P_{L}\left(q^{2}\right) \cos \theta_{\rho}\right)\right]$,
One looses analyzing power compared to the case $\tau^{-} \rightarrow \pi^{-} \nu_{\boldsymbol{\tau}}$: $\left(m_{\tau}^{2}-2 m_{\rho}^{2}\right) /\left(m_{\tau}^{2}+2 m_{\rho}^{2}\right)=0.4485<1$.

One can retain the full analyzing power if one projects out the longitudinal and transverse components of the ρ^{-}, which can be achieved by an angular analysis of the decay $\rho^{-} \rightarrow \pi^{-}+\pi^{0}$ in the rest frame of the ρ^{-}.

$$
\begin{aligned}
\frac{d \Gamma_{\rho}^{L}}{d q^{2} d \cos \theta_{\rho} d \chi / 2 \pi} & =\mathcal{B}_{\rho} \frac{d \Gamma}{d q^{2}} \frac{m_{\tau}^{2} / 2}{m_{\tau}^{2}+2 m_{\rho}^{2}}\left[1+\left(P_{T}\left(q^{2}\right) \sin \theta_{\rho} \cos \chi+P_{L}\left(q^{2}\right) \cos \theta_{\rho}\right)\right] \\
\frac{d \Gamma_{\rho}^{T}}{d q^{2} d \cos \theta_{\rho} d \chi / 2 \pi} & =\mathcal{B}_{\rho} \frac{d \Gamma}{d q^{2}} \frac{m_{\rho}^{2}}{m_{\tau}^{2}+2 m_{\rho}^{2}}\left[1-\left(P_{T}\left(q^{2}\right) \sin \theta_{\rho} \cos \chi+P_{L}\left(q^{2}\right) \cos \theta_{\rho}\right)\right]
\end{aligned}
$$

By separating the two distributions on has regained the full analyzing power of 100% in both cases.

For the leptonic modes $\tau^{-} \rightarrow \ell^{-} \bar{\nu}_{\ell} \nu_{\tau}(\ell=e, \mu)$:
$\frac{d \Gamma_{\ell}}{d q^{2} d x d \cos \theta_{\ell} d \chi / 2 \pi}=\frac{d \Gamma}{d q^{2}} \frac{\Gamma_{0}}{\Gamma_{\tau}} \beta x\left[G_{1}(x)+G_{2}(x)\left(P_{T}\left(q^{2}\right) \sin \theta_{\ell} \cos \chi+P_{L}\left(q^{2}\right) \cos \theta_{\ell}\right)\right]$.
Here $x=2 E / m_{\tau}$, where E-energy of ℓ^{-}in τ^{-}rest frame, $\Gamma_{0}=G_{F}^{2} m_{\tau}^{5} / 192 \pi^{3}$, and Γ_{τ}-total decay width of τ^{-}.
The coefficient functions:

$$
G_{1}=x(3-2 x)-(4-3 x) y^{2}, \quad G_{2}=\beta x\left(1-2 x+3 y^{2}\right)
$$

where $y=m_{\ell} / m_{\tau}$ and $\beta=\sqrt{1-4 y^{2} / x^{2}}=\sqrt{1-m_{\ell}^{2} / E^{2}}=p / E$.
Polar and azimuthal analyzing power is determined by $G_{2}(x) / G_{1}(x)$. By averaging over $x\left(2 y \leq x \leq 1+y^{2}\right)$, one obtains

$$
\frac{<\beta x G_{2}(x)>}{<\beta x G_{1}(x)>}=-\frac{1}{12}\left(1+8 y^{2}-32 y^{3}+\ldots\right)
$$

Azimuthal analyzing power:
$\frac{d \Gamma_{\ell}}{d q^{2} d \chi / 2 \pi}=\frac{d \Gamma}{d q^{2}} \frac{\Gamma_{0}}{\Gamma_{\tau}}\left(1+P_{T} A_{\chi} \cos \chi\right), \quad$ where $\quad A_{\chi}=-\frac{\pi}{12}\left(1+8 y^{2}-32 y^{3}+\ldots\right)$.
For $m_{\ell}=0$ one finds $A_{\chi}=-0.262$ which increases by 3.2% for $m_{\ell}=m_{\mu}$.

Implications of new physics in the decays $B_{c} \rightarrow\left(J / \psi, \eta_{c}\right) \tau \nu$

- B_{c} meson is the lowest bound state of two heavy quarks of different flavors, lying below the $B \bar{D}$ threshold. As a result, while the corresponding $c \bar{c}$ and $b \bar{b}$ quarkonia decay strongly and electromagnetically, the B_{c} meson decays weakly, making it possible to study weak decays of doubly heavy mesons.
- Weak decays of the B_{c} meson proceed via the c-quark decays ($\sim 70 \%$), the b-quark decays ($\sim \mathbf{2 0 \%}$), and the weak annihilation ($\sim 10 \%$).
- First observation of the B_{c} meson by the CDF Collaboration was made in an analysis of $\boldsymbol{B}_{\boldsymbol{c}} \rightarrow \boldsymbol{J} / \boldsymbol{\psi} \boldsymbol{\ell} \boldsymbol{\nu}$ Phys. Rev. D 58, 112004 (1998).
- LHCb measurement of the ratio of branching fractions

Phys. Rev. Lett. 120, 121801 (2018)

$$
R_{J / \psi} \equiv \frac{\mathcal{B}\left(B_{c} \rightarrow J / \psi \tau \nu\right)}{\mathcal{B}\left(B_{c} \rightarrow J / \psi \mu \nu\right)}=0.71 \pm 0.17 \pm 0.18
$$

which lies at about 2σ above the range of existing predictions in the Standard Model (SM).

- At the quark level, the decay $B_{c} \rightarrow J / \psi \ell \nu$ is described by the transition $b \rightarrow c \ell \nu$, which is identical to that of the decays $\bar{B}^{0} \rightarrow D^{(*)} \ell \nu$.

[^0]

Form factors of the transitions $B_{c} \rightarrow \eta_{c}$ (upper panels) and $B_{c} \rightarrow J / \psi$ (lower panels).

- perturbative QCD (pQCD) w. F. Wang et al., Chin. Phys. C 37, 093102 (2013)
- QCD sum rules (QCDSR) v. v. Kiselev, arXiv: hep-ph/0211021
- Ebert-Faustov-Galkin relativistic QM (EFG) PRD 68, 094020 (2003)
- Hernandez-Nieves-Velasco (HNV) nonrelativistic QM PRD 74, 074008 (2006)
- covariant light-front quark model (CLFQM) w. Wang et al., PRD 79, 054012 (2009)

Our form factors are very close to those computed in the CLFQM.

Lattice results for the $B_{\boldsymbol{c}} \rightarrow J / \boldsymbol{\psi}$ FFs by the HPQCD Collab. B. Colquhoun et al., PoS LATTICE 2016, 281 (2016): $\boldsymbol{A}_{\mathbf{1}}(\mathbf{0})=\mathbf{0 . 4 9}, \boldsymbol{A}_{1}\left(\boldsymbol{q}_{\text {max }}^{2}\right)=\mathbf{0 . 7 9}$, and $\boldsymbol{V}(\mathbf{0})=\mathbf{0 . 7 7}$ Our values: $A_{1}(0)=0.56, A_{1}\left(q_{\max }^{2}\right)=0.79$, and $V(0)=0.78$.

New experimental constraints

- LHCb measurement

$$
R_{J / \psi}=0.71 \pm 0.17 \pm 0.18
$$

- R. Alonso, B. Grinstein, J. M. Camalich

PRL 118, 081802 (2017)
"A constraint is obtained by demanding that the rate for $B_{c}^{-} \rightarrow \tau^{-} \bar{\nu}$ does not exceed the fraction of the total width that is allowed by the calculation of the lifetime in the SM."

$$
\mathcal{B}\left(B_{c}^{-} \rightarrow \tau^{-} \bar{\nu}\right) \lesssim 30 \%
$$

- A. G. Akeroyd, C.-H. Chen

PRD 96, 075011 (2017)
"We show that LEP data taken at the Z peak ($\sqrt{s} \approx 91 \mathrm{GeV}$) requires $\mathcal{B}\left(B_{c}^{-} \rightarrow \tau^{-} \bar{\nu}\right) \lesssim 10 \%$ and this constraint is significantly stronger than the recent constraint $\mathcal{B}\left(B_{c}^{-} \rightarrow \tau^{-} \bar{\nu}\right) \lesssim 30 \%$ from considering the lifetime of B_{c}."

$$
\mathcal{B}\left(B_{c}^{-} \rightarrow \tau^{-} \bar{\nu}\right) \lesssim 10 \%
$$

We also impose the constraint from the B_{c} leptonic decay channel. Therefore we need the leptonic branching in the presence of NP operators. The tau mode receives NP contributions from all operators except $\mathcal{O}_{T_{L}}$:

$$
\mathcal{B}\left(B_{c} \rightarrow \tau \nu\right)=\frac{G_{F}^{2}}{8 \pi}\left|V_{c b}\right|^{2} \tau_{B_{c}} m_{B_{c}} m_{\tau}^{2}\left(1-\frac{m_{\tau}^{2}}{m_{B_{c}}^{2}}\right)^{2} f_{B_{c}}^{2} \times\left|1-g_{A}+\frac{m_{B_{c}}}{m_{\tau}} \frac{f_{B_{c}}^{P}}{f_{B_{c}}} g_{P}\right|^{2}
$$

where $g_{A} \equiv V_{R}-V_{L}, g_{P} \equiv S_{R}-S_{L}, \tau_{B_{c}}$ is the B_{c} lifetime, $f_{B_{c}}$ is the leptonic decay constant of B_{c}, and $f_{B_{c}}^{P}$ is a new constant corresponding to the new quark current structure. One has

$$
\langle 0| \overline{\boldsymbol{q}} \gamma^{\mu} \gamma_{5} b\left|B_{c}(p)\right\rangle=-\boldsymbol{f}_{B_{c}} \boldsymbol{p}^{\mu}, \quad\langle 0| \overline{\boldsymbol{q}} \gamma_{5} \boldsymbol{b}\left|B_{c}(\boldsymbol{p})\right\rangle=m_{B_{c}} f_{B_{c}}^{P}
$$

In the CCQM, we obtain the following values for these constants (all in MeV):

$$
f_{B_{c}}=489.3, \quad f_{B_{c}}^{P}=645.4
$$

Experimental data: $R_{D}=0.407 \pm 0.046, R_{D^{*}}=0.304 \pm 0.015$ (HFAG-2016), and $R_{J / \psi}=0.71 \pm 0.25$, as well as the requirement $\mathcal{B}\left(B_{c} \rightarrow \tau \nu\right) \leq 10 \%$. Within the $S M$ our calculation yields $R_{D}=0.267, R_{D^{*}}=0.238$, and $R_{J / \psi}=0.24$. We take into account a theoretical error of 10% for our ratios.

Constraints on the Wilson coefficients S_{R} and S_{L} from the measurements of $R_{J / \psi}, R_{D}$, and $R_{D^{*}}$ within 2σ, and from the branching fraction $\mathcal{B}\left(B_{c} \rightarrow \tau \nu\right)$ (dashed curve).

Constraints on the Wilson coefficients V_{R}, V_{L}, and T_{L} from the measurements of $R_{J / \psi}, R_{D}$, and $R_{D^{*}}$ within 1σ (upper panels) and 2σ (lower panels), and from the branching fraction $\mathcal{B}\left(B_{c} \rightarrow \tau \nu\right)$ (dashed curve).

Differential ratios $R_{\eta_{c}}\left(q^{2}\right)$ (upper panels) and $R_{J / \psi}\left(q^{2}\right)$ (lower panels). The thick black dashed lines are the SM prediction; the gray bands include NP effects corresponding to the 2σ allowed regions; the red dot-dashed lines represent the best-fit values of the NP couplings.

Average values of $\boldsymbol{R}_{J / \psi}$ and $\boldsymbol{R}_{\eta_{c}}$ over the whole \boldsymbol{q}^{2} region

	$\left\langle R_{\eta_{c}}\right\rangle$	$\left\langle R_{J / \psi}\right\rangle$
SM	0.26	0.24
V_{L}	$(0.28,0.39)$	$(0.26,0.37)$
V_{R}	$(0.28,0.51)$	$(0.26,0.37)$
T_{L}	$(0.28,0.38)$	$(0.24,0.36)$

- The row labeled by SM contains our predictions within the SM using our form factors.
- The predicted ranges for the ratios in the presence of NP are given in correspondence with the 2σ allowed regions of the NP couplings.
- Here, the most visible effect comes from the operator $\mathcal{O}_{V_{R}}$, which can increase the average ratio $<\boldsymbol{R}_{\eta_{c}}>$ by a factor of 2 .

- For $B_{c} \rightarrow J / \psi, \mathcal{O}_{v_{R}}$ tends to decrease $\mathcal{A}_{F B}$ and shift the zero-crossing point to greater values than the SM one, while $\mathcal{O}_{T_{L}}$ can enhance $\mathcal{A}_{\text {FB }}$ at high \boldsymbol{q}^{2}.
- For $B_{c} \rightarrow \eta_{c}, \mathcal{O}_{v_{R}}$ does not affect $\mathcal{A}_{F B}$, while $\mathcal{O}_{T_{L}}$ tends to decrease $\mathcal{A}_{F B}$, especially at high \boldsymbol{q}^{2}.
- Regarding $C_{F}^{\tau}\left(q^{2}\right): \mathcal{O}_{V_{R}}$ has a very small effect on C_{F}^{τ}, and only in the case of $B_{c} \rightarrow J / \psi$. In contrast, C_{F}^{τ} is extremely sensitive to $\mathcal{O}_{T_{L}}$. In particular, $\mathcal{O}_{T_{L}}$ can change $C_{F}^{\tau}(J / \psi)$ by a factor of 4 at $q^{2} \approx 7.5 \mathrm{GeV}^{2}$. Besides, $\mathcal{O}_{T_{L}}$ enhances the absolute value of $C_{F}^{\tau}(J / \psi)$, but reduces that of $C_{F}^{\tau}\left(\eta_{c}\right)$.

q^{2} averages of the forward-backward asymmetry, the convexity parameter, the polarization components

	$B_{c} \rightarrow \eta_{c}$				
	$<\boldsymbol{A}_{\text {FB }}>$	$<C_{F}^{\tau}>$	$\left.<P_{L}\right\rangle$	$<\boldsymbol{P}_{\boldsymbol{T}}>$	$<P_{N}$
SM	-0.36	-0.43	0.36	0.83	0
T_{L}	$(-0.45,-0.37)$	$(-0.38,-0.19)$	(0.16, 0.32)	$(0.78,0.82)$	(-0.17, 0
$B_{c} \rightarrow J / \psi$					
	$<A_{F B}>$	$<C_{F}^{\tau}>$	$\left\langle P_{L}\right\rangle$	$\left.<P_{T}\right\rangle$	$<P_{N}$
SM	0.03	-0.05	-0.51	0.43	0
V_{R}	$(-0.09,0.01)$	(-0.05, -0.04)	-0.51	(0.30, 0.41)	0
T_{L}	(-0.10, 0.01)	(-0.31, -0.10)	$(-0.35,0.25)$	$(-0.61,0.21)$	(-0.17, 0

Summary

A thorough analysis of possible NP in $\bar{B}^{0} \rightarrow D^{(*)} \tau^{-} \bar{\nu}_{\tau}$ using the FFs obtained from our CCQM. Starting with a general effective Hamiltonian including NP operators, we have derived the full angular distribution and defined a large set of physical observables which helps discriminate between NP scenarios. In particular, we have studied the final tau polarization and its role in probing NP in the decays $\bar{B}^{0} \rightarrow D^{(*)} \tau^{-} \bar{\nu}_{\tau}$. Assuming NP only affects leptons of the third generation and only one NP operator appears at a time, we have gained the allowed regions of NP couplings based on recent measurements at B factories and studied the effects of each operator on the observables. It has turned out that the current experimental data (2016) of $R(D)$ and $R\left(D^{*}\right)$ prefer the operators $\mathcal{O}_{S_{L}}$ and $\mathcal{O}_{V_{L, R}}$, the operator $\mathcal{O}_{T_{L}}$ is less favored, and the operator $\mathcal{O}_{s_{R}}$ is disfavored at 2σ.

Our analysis has been done under the assumption of one-operator dominance. However, the large observable set has revealed unique behaviors of several observables and provided many correlations between them, which allows one to distinguish between NP operators. Our analysis can serve as a map for setting up various strategies to identify the origins of NP. In the future when more precise data will be collected, one can adopt the strategies described in this paper as a useful tool to discover NP in these decays if the deviation from the SM still remains. Finally, we have studied the implications of new physics in the decays $B_{c} \rightarrow\left(J / \psi, \eta_{c}\right) \tau \nu$.

More experimental data now are available. One should redo the analysis to see the new picture.

[^0]: Lecture in this School by A. Issadykov

