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Feynman loop diagrams in QFT are contour integrals in the complex plane. They are analytic
function in the complex plane of their external variables with the cuts related to the particles
propagating in the loops, and they satisfy sertain dispersion representations.
First, the two-point function Σ(p2) is discussed and the dispersion representation in p2 is derived.
Second, single and double dispersion representations for the three-point function Γ(p2, p′2, q2) are
considered; the appearance of the so-called anomalous thresholds is explained.
Finally, subtleties of perturbative calculations in QCD are briefly touched.
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1. Two - point function

Σ(p2) =
1

(2π)4i

∫
d4k

(m2
1 − k2 − i0)(m2

2 − (p − k)2 − i0)

UV divergent integral, satisifes a sinlge dispersion representation with one subtraction
(for m1 = m2 = m see blackboard)

Σ(p2) = Σ(0) + p2

∞∫
4m2

ds
π s(s − p2 − i0)

σ(s), σ(s) =
1

16π

√
1 − 4m2

s
,

For m1 , m2 (I dont’t write explicitly subtraction, but it is there)

Σ(p2) =

∞∫
(m1+m2)2

ds
π(s − p2 − i0)

√
(s − (m1 − m2)2)(s − (m1 + m2)2)

s

Lessons:
• Σ(p2) is analytic function with cut from “unitary threshold” (m1 + m2)2 to∞ along real axis
• Σ(p2) satisifes dispersion representation (with subtractions)
• Σ(p2) has also another branch point on unphysical sheet of its Riemann surface that does not
affect the dispersion representation
• The imaginary part (discontinuity) of the Feynman integral is finite and may be calculated via
Cutkosky rule, i.e. by replacing 1

m2−k2−i0 → 2πiδ(m2 − k2)θ(k0).
•∗ Landau equations give the location of all singularities of Feynman diagrams
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2. Three - point function

F(q2, p2
1, p

2
2|m1,m2,m3)) =

1
(2π)4i

∫
d4k

(m2
3 − k2 − i0)(m2

2 − (p1 − k)2 − i0)(m2
1 − (p2 − k)2 − i0)

p1 = p2 + q.
The Feynman integral is now UV convergent. For all Euclidean external momenta

p2
1 < 0, p2

2 < 0, q2 < 0,

the function F(q2, p2
1, p

2
2|m1,m2,m3) is real and (relatively) easily calculable.

In applications to physical phenomena (i.e. meson interations in ChPT, or hadron interactions in
low-energy models, or quark-gluon interactions in QCD or in quark models) timelike values of
the external momenta are needed. Dispersion representations become very useful.

One may consder single dispersion representation and double dispersion representation. It turns out
that at timelike external momenta, some of the singularities from the unphysical sheet move onto
the physical sheet and thus lead to anomalous cuts and anomalous thresholds.
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2 a. Single dispersion representation in q²

m

1
p

2

q

m

mp

Consider the case of particles of the same mass m in the loop and q2 < 0, but do not restrict the
values of p2

1 and p2
2. A normal single dispersion representation in q2 may be written as

F(q2, p2
1, p

2
2) =

1
π

∫
dt

t − q2 − i0
σ(t, p2

1, p
2
2). (1)

For p2
1 < 0 and p2

2 < 0, σ(t, p2
1, p

2
2) may be calculated by Cutkosky rules, i.e., by placing particles

attached to the q2 vertex on the mass shell (m2 − k2 − i0)−1 → 2iπθ(k0)δ(m2 − k2):

σ(t, p2
1, p

2
2) =

1
16πλ1/2(t, p2

1, p
2
2)

log

t − p2
1 − p2

2 + λ
1/2(t, p2

1, p
2
2)
√

1 − 4m2/t

t − p2
1 − p2

2 − λ1/2(t, p2
1, p

2
2)
√

1 − 4m2/t

 θ(t − 4m2).

Here λ(a, b, c) = (a − b − c)2 − 4bc is the triangle function.
The function σ(t, p2

1, p
2
2) has the branch point of the logarithm at q2 = t0(p2

1, p
2
2) given by the

solution to the equation (t − p2
1 − p2

2)2 = λ(t, p2
1, p

2
2)(1 − 4m2/t), or, equivalently, to the equation

p2
1p2

2t
m2 + λ(p2

1, p
2
2, t) = 0.
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Explicitly, for p2
1, p

2
2 < 0, one finds

t±0 = p2
1 + p2

2 −
p2

1p2
2

2m2 ±
1

2m2

√
p2

1(p2
1 − 4m2)p2

2(p2
2 − 4m2).

For p2
1 < 0 or p2

2 < 0 these branch points lie on the second (unphysical) sheet of the function σ and
do not influence the q2-dispersion representation for F.
However, in the Minkowski region of positive values of p2

1 and p2
2 (take care of staying on a proper

branch of
√

p2(p2 − 4m2)) the branch point t−0 may move onto the physical sheet through the nor-
mal cut, thus requiring the modification of the dispersion representation for F.

The following plots show the trajectory of the branch point t−0 vs. p2
1 and p2

2.
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2

2

oo
2

2p      −

4m2

p  = 0
2

2

0
2
2

t  (p  ), 

oo
2

2p      +

2

2p  = 4m2 2

2 2p  = 4m −p
1

2

. .

b.

0

1
20 < p  < 4m

q 4m  < p

2

0
2
2

q2

oo
2

2p      −oo
2

2p      +

2

2p  = 4m2 p  = 0
2

2

c.

0. .

t  (p  ), 2 2
1

4m

For p2
1 > 0, p2

2 > 0, and p2
1 + p2

2 > 4m2, t−o moves onto the physical sheet and leads to anomalous cut.
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Finally, for 0 < p2
1 < 4m2, 0 < p2

2 < 4m2, p2
1 + p2

2 > 4m2 the migration of t−0 (p2
1, p

2
2) looks as follows

2
20t  (p  )2

2 4m q

and the single dispersion representation for F takes the form

F(q2, p2
1, p

2
2) = θ(p2

1 + p2
2 − 4m2)

4m2∫
t−0 (p2

1,p
2
2)

dt
π(t − q2 − i0)

σanom(t, p2
1, p

2
2)

+

∞∫
4m2

dt
π(t − q2 − i0)

σnorm(t, p2
1, p

2
2).

For t0(p2
1, p

2
2) < q2 < 4m2 (in case p2

1 + p2
2 > 4m2) the imaginary part of the form factor comes from

the anomalous part, while for q2 > 4m2 it comes from the normal part.
Explcit expressions for σanom(t, p2

1, p
2
2) and σnorm(t, p2

1, p
2
2) are known

[e.g. W. Lucha, D. M., S. Simula, PRD75, 016001 (2007); Erratum: PRD92, 019901(E) (2015) or much earlier papers which are a more difficult reading].

For a weakly bound state (p2
1 = p2

2 = M2,M = 2m − ϵB, ϵB ≪ m), the anomalous threshold lies
at t0 = 16mϵ, and the anomalous contribution is just the one that determines the poperties of the
form factor in the NR limit.
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2 b. Double dispersion representation in p1 ² and p2 ²

For q2 ≤ 0, the triangle diagram may be written as double dispersion representation in p2
1 and p2

2:

F(q2, p2
1, p

2
2) =
∫

ds1

π(s1 − p2
1 − i0)

ds2

π(s2 − p2
2 − i0)

∆(q2, s1, s2). (2)

The double spectral density ∆(q2, s1, s2) may be obtained by placing all particles in the loop on the
mass shell and taking the off-shell external momenta p1 → p̃1, p2 → p̃2, such that
p̃2

1 = s1, p̃2
2 = s2, and ( p̃1 − p̃2)2 = q2 is fixed:

∆(q2, s1, s2) =
∫

dk1dk2dk3

8π
δ(p̃1 − k2 − k3)δ( p̃2 − k3 − k1)θ(k0

1)δ(k2
1 − m2)θ(k0

2)δ(k2
2 − m2)θ(k0

3)δ(k3
2 − m2),

Explicitly, one finds 1

∆(q2, s1, s2) =
1

16λ1/2(s1, s2, q2)
θ
(
s1 − 4m2

)
θ
(
s2 − 4m2

)
θ
[(

q2(s1 + s2 − q2)
)2 − λ(s1, s2, q2)λ(q2,m2,m2)

]
.

The solution of θ-function gives the allowed intervals for integration variables s1 and s2:

4m2 < s2, s−1 (s2, q2) < s1 < s+1 (s2, q2),

where

s±1 (s2, q2) = s2 + q2 − s2q2

2m2 ±
√

s2(s2 − 4m2)
√

q2(q2 − 4m2)
2m2 .

1The easiest way to obtain this double dispersion representation is to introduce light-cone variables in the Feynman expression, and to choose the reference frame where q+ = 0
(which restricts q2 to q2 < 0). Then the k− integral is easily done, and the remaining x and k⊥ integrals may be written in the form of double spectral representation. Precisely the
same way, as we did for Σ
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The final double dispersion representation for the triangle diagram at q2 < 0 takes the form

F(q2, p2
1, p

2
2) =

∞∫
4m2

ds2

π(s2 − p2
2 − i0)

s+1 (s2,q2)∫
s−1 (s2,q2)

ds1

π(s1 − p2
1 − i0)

1
16λ1/2(s1, s2, q2)

. (3)

Notice the relation s−1 (s2, q2) > 4m2, which holds for all s2 > 4m2 at q2 < 0: this guarantees that
the integration region in s1 always remains above the normal threshold. Clearly, the integration
region does not depend on the values of p2

1 and p2
2. Essential for us is that no anomalous cuts

emerge in the double dispersion representation in p2
1 and p2

2 for q2 < 0. This makes the double
dispersion representation particulary convenient for treating the triangle diagram for values of
p2

1 and p2
2 above the thresholds. One should just take care about the appearance of the absorptive

parts.
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2 c. Double dispersion representation in p1 ² and p2 ² for "weak" decayknematics

µ

1
p

2

q

m

mp

For q2 < 0, double dispersion representation is same as for equal masses:

F(q2, p2
1, p

2
2) =

∞∫
4m2

ds2

π(s2 − p2
2)

s+1 (s2,q2)∫
s−1 (s2,q2)

ds1

π(s1 − p2
1)

1
16λ1/2(s1, s2, q2)

,

where

s±1 (s2, q2) =
s2(m2 + µ2 − q2) + 2m2q2

2m2 ± λ
1/2(s2,m2,m2)λ1/2(q2, µ2,m2)

2m2 .

A new feature compared to equal masses in the loop is the appearance of the region 0 < q2 <

(µ − m)2, which was absent in the equal-mass case. This region corresponds to the decay of a
particle of mass µ to a particle of mass m with the emission of a particle of mass

√
q2.

The form factor in the region 0 < q2 < (µ − m)2 may be obtained by analytic continuation of
this expression. Let us consider the structure of the singularities of the integrand in the complex
s1-plane for a fixed real value of s2 in the interval s2 > 4m2.



11

The integrand has singularities (branch points) related to the zeros of the function

λ(s1, s2, q2) = (s1 − sL
1)(s1 − sR

1 ),

at sL
1 = (

√
s2 −

√
q2)2 and sR

1 = (
√

s2 +
√

q2)2. As q2 ≤ 0, these singularities lie on the unphysical
sheet. However, as q2 becomes positive, the point sR

1 may move onto the physical sheet through the
cut from s−1 to s+1 . This happens for values of the variable s2 > s0

2, with s0
2 obtained as the solution

to the equation sR
1 (s2, q2) = s−1 (s2, q2). Explicitly, one finds√

s0
2 =
µ2 − m2 − q2√

q2
.

The trajectory of the point sR
1 (s2, q2) in the complex s1-plane at fixed q2 > 0 vs. s2 is shown here

s
2(   +m)µ

2
s  = s (q )

20

2

R

1 2   s (s  )
   s (s  )21

−    s (s  )21
+

. . .
1

As q2 > 0, for s2 > s0
2(q2) the integration contour in the complex s1-plane should be deformed such

that it embraces the points sR
1 and s+1 . Respectively, the s1-integration contour contains the two

segments: the normal part from s−1 to s+1 , and the anomalous part from sR
1 to s−1 .

The double spectral density for the anomalous piece is just the discontinuity of the function
1/
√
λ(s1, s2, q2) that is twice the function itself 2/

√
λ(s1, s2, q2).
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The final representation for the form factors at 0 < q2 < (µ − m)2 takes the form

F(q2, p2
1, p

2
2) =

∞∫
4m2

ds2

π(s2 − p2
2 − i0)

s+1 (s2,q2)∫
s−1 (s2,q2)

ds1

π(s1 − p2
1)

1
16λ1/2(s1, s2, q2)

+ 2θ
(
0 < q2 < (µ − m)2

) ∞∫
s0
2(q2)

ds2

π(s2 − p2
2 − i0)

s−1 (s2,q2)∫
sR
1 (s2,q2)

ds1

π(s1 − p2
1)

1
16λ1/2(s1, s2, q2)

.

A typical behavior of the anomalous and the normal contributions is plotted
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The picture is slightly different for the “external” s1-integration, and the “internal” s2-integration.

s (s )24m

2s  = s (q )1 1

0

. ..
−
2 1 12

L
2s

2s  (s )1s (s )+

The final representation for the form factors at 0 < q2 < (µ − m)2 takes the form

F(q2, p2
1, p

2
2) =

∞∫
(m+µ)2

ds1

π(s1 − p2
1 − i0)

s+2 (s2,q2)∫
s−2 (s1,q2)

ds2

π(s2 − p2
2)

1
16λ1/2(s1, s2, q2)

+ 2θ
(
0 < q2 < (µ − m)2

) ∞∫
s0
1(q2)

ds1

π(s1 − p2
1 − i0)

sL
2 (s1,q2)∫

s+2 (s2,q2)

ds2

π(s2 − p2
2)

1
16λ1/2(s1, s2, q2)

.
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3. Singularities of Feynman diagrams in QCD

In pQCD we work with diagrams where quarks and gluons propagate. Respectively, these dia-
grams contain quark and gluon singularities. However, quarks and gluons are confined and do
not exist as free particles. We know that in full QCD quark/gluon singularites are replaced by
hadron singularities.
(→ Blackboard)

Where quark diagrams may be used?
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Summary and conclusions

•QFT Green functions Γ(p2
1, . . . , p

2
n) are given by contour integrals in the complex k-plane. As the

result, the Green functions in perturbation theory are analytic functions of their variables p2
i with

cuts and branch points and they satisfy dispersion representations in these variables.
• At spacelike values of external momenta, p2

i < 0, dispersion representations have only “unitary”
thresholds related to the normal cuts of the Feynman diagrams. Respectively, the dispersion
representations for the Green functions have only normal cuts.
As some of the external momenta go to the timelike region, p2

i > 0, anomalous thresholds, related
to the motion of branch points from the unphysical sheets onto the physical sheet through the normal
cuts, may emerge. If this happens, the anomalous cuts emerge and the corresponding anomalous
contributions in the spectral representations appear.
• In some cases, anomalous thresholds have dramatic impact on the bound state properties: i.e.
the deuteron size is determinded by the anomalous threshold at q2 = 16MNϵ (ϵ = 2.2 MeV) in
the triangle diagram with nucleoons in the loop, and not by the normal ππ threshold at q2 = 4m2

π

in the triagle diagram with pions and the deuteron. Anomalous thresholds emerge also in other
hadron decays described by triangle diagrams.
• Landau equations are a powerful tool to find the location of all singularities of Feynman dia-
grams (QFT Green functions). In particular, their solution gives also the location of anomalous
thresholds.
• In QCD, because of confinement of quarks and gluons, diagrams of perturbation theory may be
used for the description of the data far away from the quark thresholds.


