Holographic quark hadron continuity

Farideh Kazemian

Shahrood University of Technology(SUT)

Kazem Bitaghsir Fadafan

(SUT) Andreas Schmitt (U. of Southampton) published in JHEP 03, 183 (2019)

QCD at nonzero densities and temperatures

Theoretical approaches

• Nambu-Jona-Lasinio (usually no nuclear matter)

- quark-meson (no nucleons), nucleon-meson (no quarks)
- nucleon-quark-meson (patched together, many parameters)

What is Holography?

• Holography refers to a duality between a string theory (in the bulk) and a field theory (on the boundary)

• Original example: Maldacena duality(conjecture):N = 4 SYM in3 + 1dim. is dual to type IIB strings on AdS5

• Strong-weak coupling duality

Maldacena (1997), Gubser, Klebanov, Polyakov; Witten (1998)

Sakai-Sugimoto model of holographic QCD

- N_f D8-branes at $X_4 = 0$ N_f D8-branes at $X_4 = L$,
- Global chiral symmetry visible as gauge theory on D8-D8

Quark masses are neglected

Chiral symmetry exact

- Originally used for meson ,baryon ,glueball spectra
- Also employed for phase diagrams
- We can account for nuclear and quark matter in a single model
- Model only has a few parameters

E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998)

T. Sakai and S. Sugimoto, Prog. Theor. Phys. 113, 843 (2005)

Baryon in Sakai-Sugimoto model

Baryons in Sakai-Sugimoto:

 D4-brane wrapped on S⁴= instantons on D8-branes

T. Sakai, S. Sugimoto, Prog. Theor. Phys. 113, 843-882 (2005) H. Hata, T. Sakai, S. Sugimoto, S. Yamato, Prog. Theor. Phys. 117, 1157 (2007)

Phases

Interaction from two-instanton solution

- construct N-instanton system from 2-instanton solution
 - define interaction energy

 $I_{(1,2)}^2 = \mathcal{F}_{(1,2)}^2 - F_{(1)}^2 - F_{(2)}^2$

Width

Single instanton

 $F_{(n)}^{2} \sim \frac{\rho^{4}}{((\vec{x} - \vec{x_{n}})^{2} + \frac{z^{2}}{z^{2}} + \frac{\rho^{2}}{z^{2}})^{4}}$ deformation instanton

 $\mathcal{F}^{2}_{(1,2)}$ =2-body interaction from exact 2 instanton Solution in flat space: (ADHM) M. F. Atiyah, N. J. Hitchin, V. G. Drinfeld and Y. I. Manin, PLA 65, 185 (1978) instanton

• employ nearest-neighbor approximation

Speed of sound

Two scenarios:

a: obey conformal limit for all densitiesb: QCD violating this conformal bound

schematic plot from I. Tews et al., Astrophys. J. 860, 149 (2018)

- Fit Sakai-Sugimoto parameters to low-density nuclear matter
- $\circ~$ Non monotonic speed of sound

Summary

- 1) Chirally broken and chirally symmetric phases in Sakai -Sugimoto model can be continuously connected (in previous studies just included instantons only in the confined geometry or did not include interaction between them)
- 2) Instanton become infinitesimally thin in holographic direction but spread out to become infinitely wide in spatial direction
- 3) Parameters of the model can be fitted to reproduce properties of nuclear matter at saturation
- 4) Non-monotonic behavior of speed of sound in nuclear matter

Out look

- 1) Include nonzero quark masses
- 2) Non zero temperature and/or magnetic field
- 3) Equation of state \iff Neutron star mass/radius

