

Lecture series on QCD Exotics in the Heavy Quark Sector Part I: Tools

Christoph Hanhart

Forschungszentrum Jülich

Lecture series on QCD Exotics in the Heavy Quark SectorPart I: Tools - p. 1/32

Setting the stage

→ While QCD gets perturbative at large energies, it is non-perturbative at low energies

> Quarks are confined

- → Spectroscopy is the method of choice to investigate the inner workings of QCD and the formation of matter
- → Although overall providing a good general understanding the quark model has certain short comings
- \rightarrow The physics of light and heavy quarks is rather different

Outline

Lecture I: Tools

- → Lattice QCD
- → Effective field theories (ChPT, HQEFT)
- \rightarrow Unitarisation
- \rightarrow Large N_c
- Lecture II: The single heavy sector
- → Goldstone–Boson D-meson scattering
- → The positive parity D-mesons
- → Predictions and tests
- Lecture III: The $\bar{Q}Q$ sector
- → The XYZ-stories

In this lecture series the focus is on mesons

Lattice QCD

A 'brute force' numerical solution of full QCD in the Euclidean

- → Quarks are located on the sites
- \rightarrow Gauge fields on the links

Fig. courtesy of T. Luu

Two point functions

$$\langle \mathcal{O}_{j}(t')\mathcal{O}_{i}(t) \rangle = \frac{\int d[U]d[\bar{q}]d[q]\mathcal{O}_{j}(t')\mathcal{O}_{j}(t)\exp(-S[U,\bar{q},q])}{\int d[U]d[\bar{q}]d[q]\exp(-S[U,\bar{q},q])}$$

$$= \sum_{\alpha} C_{ji}^{\alpha}\exp(-m_{\alpha}(t'-t))$$

allow one to calculate masses even of excited states \rightarrow use large enough basis

Lattice QCD: Ground states

Simulations done with finite L, a, m_q (m_π)

Dürr et al., Science 322(2008)1224

- \rightarrow light quarks need large volumes ($\lambda_{\pi} = 1/m_{\pi}$)
- \rightarrow computing time (=costs) scale, e.g., as $(L^3T)^{5/4}/(m_{\pi}^2a^6)$
- \rightarrow extrapolations necessary in a, L, (m_{π})

Lattice QCD: Excited states

Use of many operators allow extraction of excited states:

At this pion mass / for these operators all states stable Both quark model states and (crypto)-exotics appear!

Lattice QCD resonances

Lüscher NPB354(1991)531, Döring et al. EPJA47(2011)139

Volume dependence gives access to resonances via phase shifts

$$p \cot(\delta(p)) = \frac{2\pi}{L\sqrt{\pi}} \lim_{\Lambda \to \infty} \left(\sum_{\vec{n}}^{|\vec{n}| < \Lambda} \frac{1}{\vec{n}^2 - \hat{p}^2} - \sqrt{4\pi} \Lambda \right)$$

where $\hat{p} = pL/(2\pi)$ and $\Lambda = q_{\max}L/(2\pi)$

 $ho\pi\pi$ coupling g largely m_{π} independent C.H. et al., PRL100(2008)152001

Inclusion of inelasticities necessary

Döring et al., EPJA47(2011)139

lowering m_{π} might become non-trivial

Wilson et al., PRD92 (2015) no.9, 094502 Döring et al., PLB722(2013)185

Simulations technically very demanding

Effective field theories

Weinberg 1979

- → Precondition: separation of scales low vs. high energy dynamics
 - ▷ low-energy dynamics in terms of relevant dof's: $E \sim p \sim Q$
- \rightarrow Small parameter(s) & power counting
 - \triangleright Standard QFT: trees + loops \rightarrow renormalization
 - ▷ Expansion in powers of Q over the large scale $M = \sum_{\nu} (Q/\Lambda)^{\nu} f(Q/\mu, C_i)$
 - μ : regularization scale; C_i : low–energy constants ν bounded from below \rightarrow controlled expansion

Let Q be a symmetry charge from Noethers theorem and $U = e^{i\alpha Q}$ and thus

$$UH_0U^{\dagger} = H_0 \; .$$

assume two states A and B with

$$U|A\rangle = |B\rangle.$$

Then one finds

$$E_A = \langle A | H_0 | A \rangle = \langle A | U^{\dagger} U H_0 U^{\dagger} U | A \rangle = \langle B | H_0 | B \rangle = E_B.$$

Thus the states that can be reached from A via the symmetry operation are degenerate with A.

This is called an exact symmetry.

 $SU(n)_V$

$$m_{K^+}$$
=494 MeV $\sim u ar{s}$
 m_{K^0} =498 MeV $\sim d ar{s}$

$$m_{\pi^+}$$
=140 MeV $\sim u \bar{d}$
 m_{π^0} =135 MeV $\sim u \bar{u} - d \bar{d}$

$$m_\eta$$
=547 MeV $\sim u ar u + d ar d - 2 s ar s$

$$m_{\eta^\prime}$$
=958 MeV $\sim u ar u + d ar d + s ar s$

Note:
$$Q_u = \frac{2}{3}e$$
; $Q_d = Q_s = -\frac{1}{3}e$

 $2(m_{K^+} - m_{K^0})/(m_{K^+} + m_{K^0}) \simeq 2(m_{\pi^+} - m_{\pi^0})/(m_{\pi^+} + m_{\pi^0}) < 3 \%.$

Thus: $SU(2)_V$ ($u \leftrightarrow d$) = Isospin is good symmetry of spectrum. Thus: up and down quark must have very similar properties What causes Isospin violation?

EM Isospin violation

Natural source of Isospin violation: Different quark charges:

$$Q_u = \frac{2}{3}e$$
; $Q_d = Q_s = -\frac{1}{3}e$

charged particles heavier than neutrals

- $\rightarrow\,$ correct for pions
- \rightarrow wrong for kaons!

There must be other source of isopion violation

Strong isospin violation

$$\mathcal{L}_{QCD} = \bar{q}i \not\!\!D q - \bar{q} \mathcal{M} q + \dots$$

$$\mathcal{M} = \begin{pmatrix} m_u & 0 \\ 0 & m_d \end{pmatrix} = \frac{m_u + m_d}{2} \,\hat{1} + (m_u - m_d) \,\frac{1}{2} \tau_3 \;.$$

$$\mathcal{L}'_{QCD} = \bar{q}' i \mathcal{D} q' - \bar{q}' \mathcal{M} q' + \dots = \mathcal{L}_{QCD} + \bar{q} \left(\mathcal{M} - \mathcal{M}' \right) q$$

where $q \to q' = U_V q$ and $\mathcal{M}' = U_V \mathcal{M} U_V^{\dagger}$ with $U_V = \exp(i\theta_V^a \tau^a/2)$; $\vec{\tau}$ are the Pauli matrices (as used for spin)

$$[\tau^a, \tau^b] = 2i\epsilon^{abc}\tau^c \implies \mathcal{M} = \mathcal{M}' \text{ for } m_u = m_d$$

 \rightarrow (almost) SU(2) invariant for vanishing (small) $(m_u - m_d)/\Lambda$

 \rightarrow Isospin violation through $(m_u - m_d)$:

leading strong isospin violation transforms as third component of an isovector

→ Electro–magnetic isospin violation through quark charges;

leading net effect transforms as particular component of a rank 2 tensor

Can be used to disentangle effects

Example

$(m_u - m_d)$ effect transforms as T_3 (to leading order)

using $K^+ \sim u\bar{s}$, $K^0 \sim d\bar{s}$ and $p \sim uud$, $n \sim ddu$:

implies $m_u < m_d$ and $|\Delta m^{em}| \sim |\Delta m^{strong}|$

Pion properties

Symmetries

Let using $q_{R/L} = \frac{1}{2}(1 \pm \gamma_5)q$; then

 $\mathcal{L}_{QCD} = \bar{q}_L i D \!\!\!/ q_L + \bar{q}_R i D \!\!\!/ q_R - \bar{q}_R \mathcal{M} q_L - \bar{q}_L \mathcal{M} q_R + \dots$

Thus, if the first n_f elements of \mathcal{M} vanish, we have

 $U(n_f)_L \times U(n_f)_R = SU(n_f)_A \times SU(n_f)_V \times U(1)_V \times U(1)_A$

where
$$V = R + L \rightarrow U_V = \exp(i\Theta_V^a T^a)$$
 even parity.
 $A = R - L \rightarrow U_A = \exp(i\gamma_5\Theta_A^a T^a)$ odd parity.

- ⇒ axial symmetry gives degenerate states of opposite parity but this symmetry is not observed ...
- $\rightarrow SU(n_f)_V$ is still conserved for $m_i = m_j \neq 0$ (Isospin).
- \rightarrow $U(1)_V$ leads to baryon number conservation.
- $\rightarrow U(1)_A$ is broken by quantum anomaly.

Nambu; Goldstone

Before we implicitly assumed $U|0\rangle = |0\rangle$. In field theory picture:

$$|A\rangle = \phi_A |0\rangle$$
 and $|B\rangle = \phi_B |0\rangle$ with $U\phi_A U^{\dagger} = \phi_B$

Thus we now get

$$E_{A} = \langle A | H_{0} | A \rangle = \langle 0 | \phi_{A}^{\dagger} H_{0} \phi_{A} | 0 \rangle$$

$$= \langle 0 | U^{\dagger} U \phi_{A}^{\dagger} U^{\dagger} U H_{0} U^{\dagger} U \phi_{A} U^{\dagger} U | 0 \rangle$$

$$= \langle 0 | U^{\dagger} \phi_{B}^{\dagger} H_{0} \phi_{B} U | 0 \rangle \begin{cases} = E_{B} & \text{for } U | 0 \rangle = | 0 \rangle \\ \neq E_{B} & \text{for } U | 0 \rangle \neq | 0 \rangle. \end{cases}$$

Then symmetry not reflected in spectrum; it is hidden.

 \rightarrow spontaneous symmetry breaking (SSB)

Hidden Symmetries

Let $U|0\rangle^a = \exp\left(i\sum \alpha_k Q_k\right)|0\rangle = |\alpha\rangle$; Then

 $E_{\alpha} = \langle \alpha | H_0 | \alpha \rangle = \langle 0 | U^{\dagger} H_0 U | 0 \rangle = \langle 0 | H_0 | 0 \rangle = E_0 .$

Thus, all α states are degenerate with the vacuum

Therefore, for a continuous symmetry

- \rightarrow there are massless particles called Goldstone bosons (GB) (Goldstone Theorem);
- \rightarrow their number agrees to that of broken generators.

Conjecture: Pions are theses Goldstone-Bosons

Define pion decay constant f_{π} :

 $\langle \pi | Q_A | 0 \rangle \neq 0 \rightarrow$ Lorentz invariance: $\langle \pi | A^{\mu} | 0 \rangle =: i f_{\pi} q^{\mu} \neq 0$

 $f_{\pi} \neq 0$ is a necessary condition for SSB

Decay constant f_{π} can be fixed from weak decays:

$$= \frac{1}{\sqrt{2}} G_F \langle 0 | A_\alpha^- | \pi^+ \rangle \bar{\mu}^+ \gamma^\alpha (1 - \gamma_5) \nu_\mu$$
$$\rightarrow f_\pi = 92 \text{ MeV}$$

Intimate link between weak matrix elements and strong force!

Another statement of the Goldstone theorem:

At vanishing momenta GB do not interact.

- **Proof:** for 4π vertex function *V*
- Currents still conserved: $q_{\mu} \mathcal{A}^{\mu} = 0$

$$\implies \lim_{q \to 0} q_{\mu} \mathcal{A}^{\mu} = -f_{\pi} \lim_{q \to 0} V = 0$$

Effective Theory for Goldstone Boson JÜLICH Forschungszentrum

• collect π^{\pm} , π^{0} , K^{\pm} , K^{0} , \bar{K}^{0} , η in a common field U:

$$U = \exp\left(\frac{i\phi}{f_{\pi}}\right) , \ \phi = \sqrt{2} \begin{pmatrix} \frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & K^{0} \\ K^{-} & \bar{K}^{0} & -\frac{2\eta}{\sqrt{6}} \end{pmatrix}$$

• low energies: expand in powers of momenta = # derivatives:

$$\mathcal{L} = \mathcal{L}^{(0)} + \mathcal{L}^{(2)} + \mathcal{L}^{(4)} + \mathcal{L}^{(6)} + \dots$$

• leading term of the effective Lagrangian is $\mathcal{L}^{(2)}$:

$$\mathcal{L}^{(2)} = \frac{f_{\pi}^2}{4} \langle \partial_{\mu} U \partial^{\mu} U^{\dagger} \rangle$$

• expand U in powers of ϕ , $U = 1 + i\phi/f_{\pi} - \phi^2/(2f_{\pi}^2) + \dots$ Normalisation to reproduce canonical kinetic terms $\mathcal{L}^{(2)} = \partial_{\mu}\pi^+\partial^{\mu}\pi^- + \partial_{\mu}K^+\partial^{\mu}K^- + \dots$

Quark Masses

- in nature, quark masses small, but non-zero
 - chiral symmetry explicitly broken
 - if symmetry breaking is weak, perform perturbative expansion in the quark masses

"Chiral Perturbation Theory"

 $\mathcal{L}_{\mathsf{eff}} = \mathcal{L}_{\mathsf{eff}}(U, \partial U, \partial^2 U, \dots, \mathcal{M}) , \quad \mathcal{M} = \mathsf{diag}(m_u, m_d, m_s)$

- effective Lagrangian (properly generalised) still appropriate too to systematically derive all symmetry relations
- Expansion parameter $m_{\pi}/\Lambda_{\chi} \sim p/\Lambda_{\chi}$ with $\Lambda_{\chi} \sim 1 \text{ GeV}$

Selected Results I

$$\mathcal{L}^{(2)} = \frac{F^2}{4} \left[\langle \partial_{\mu} U \partial^{\mu} U^{\dagger} \rangle + \frac{2B \langle \mathcal{M} U^{\dagger} + \mathcal{M}^{\dagger} U \rangle \right]$$

• read off mass terms: Gell-Mann–Oakes–Renner relation(s)

$$M_{\pi^{\pm}}^{2} = B(m_{u} + m_{d}) + 2Ze^{2}f_{\pi}^{2}$$

$$M_{\pi^{0}}^{2} = B(m_{u} + m_{d}) - \mathcal{O}((m_{u} - m_{d})^{2})$$

$$M_{K^{\pm}}^{2} = B(m_{u} + m_{s}) + 2Ze^{2}f_{\pi}^{2}$$

$$M_{K^{0}}^{2} = B(m_{d} + m_{s})$$

$$M_{\eta}^{2} = \frac{B}{3}(m_{u} + m_{d} + 4m_{s}) + \mathcal{O}((m_{u} - m_{d})^{2})$$

- Gell-Mann–Okubo mass formula: $4M_K^2 = 3M_\eta^2 + M_\pi^2$ \longrightarrow fulfilled in nature at 7% accuracy
- quark mass ratios:

$$\frac{m_u}{m_d} \approx 0.55; \quad \frac{m_s}{m_d} \approx 22$$
 (1)

Selected results II

• isospin decomposition of $\pi\pi$ scattering amplitude:

 $M(\pi^a \pi^b \to \pi^c \pi^d) = \delta_{ab} \delta_{cd} A(s, t, u) + \delta_{ac} \delta_{bd} A(t, u, s) + \delta_{ad} \delta_{bc} A(u, s, t)$

• calculate A(s, t, u) from $\mathcal{L}^{(2)}$:

$$A(s,t,u) = \frac{s - M_\pi^2}{f_\pi^2}$$

Weinberg, PRL17(1966)1313

- \rightarrow parameter-free prediction
- \rightarrow in accordance with Goldstone theorem: $\pi\pi$ interaction vanishes at low energies ($s \rightarrow 0, m_q \rightarrow 0$)
- \rightarrow Example: $\pi\pi$ -isoscalar *s*-wave scattering length:

 $a_0 = (0.16 + 0.04 + 0.017) \pm 0.009$ at LO, NLO, N²LO

Bijnens et al. PLB374(1996)210

Exp.: $a_0 = 0.221 \pm 0.006$ in excellent agreement

Batley et al. [NA48/2 Coll.] EPJC79(2010)635

Lecture series on QCD Exotics in the Heavy Quark SectorPart I: Tools - p. 24/32

Heavy Sources: πN scattering

$$\mathcal{L}_{\pi N}^{(1)} = \bar{\psi} \left(i \gamma_{\mu} \mathcal{D}^{\mu} - m + \frac{g_A}{2} \gamma_{\mu} \gamma_5 u^{\mu} \right) \psi \qquad \psi = \begin{pmatrix} p \\ n \end{pmatrix}$$

$$\mathcal{D}^{\mu} = \partial^{\mu} + \Gamma^{\mu} \qquad \Gamma^{\mu} = \frac{1}{2} \left(u^{\dagger} (\partial^{\mu} - i r^{\mu}) u + u (\partial^{\mu} - i l^{\mu}) u^{\dagger} \right)$$
$$u^{\mu} = i \left(u^{\dagger} (\partial^{\mu} - i r^{\mu}) u - u (\partial^{\mu} - i l^{\mu}) u^{\dagger} \right) \qquad u = \sqrt{U}$$

• now, due to spin (Dirac structures), odd powers possible:

$$\mathcal{L}_{\pi N} = \mathcal{L}_{\pi N}^{(1)} + \mathcal{L}_{\pi N}^{(2)} + \mathcal{L}_{\pi N}^{(3)} + \mathcal{L}_{\pi N}^{(4)}$$

new parameters at leading order:

- *m*: nucleon (baryon) mass in the chiral limit
- g_A : axial vector coupling from neutron beta decay: $g_A = 1.26$

Goldberger-Treiman relation:

$$g_{\pi N} = \frac{g_A m_N}{F_\pi}$$

Unitarization

Unitarity relation:
$$Im(t) = \sigma |t|^2$$
 with $\sigma = \sqrt{1 - 4m_{\pi}^2/s}$

- \rightarrow Perturbative expansion consistent only to given order
- \rightarrow s-dependent terms quickly hit unitarity bound
- Solution: Unitarization \rightarrow can produce poles Truong, Dorado, Pelaez, Kaiser, Weise, Oller, Oste, Lutz, Kolomeitsev, Guo, Meißner, C.H., ... Different methods used (dep. needs to be clarified); \rightarrow universal picture emerges in many channels!
- **Example I:** $\pi\pi$ scattering from the Inverse Amplitude Method Idea: write unitarity as

$$\operatorname{Im}(t^{-1}) = -\sigma \quad \longrightarrow t = \frac{1}{\operatorname{Re}(t^{-1}) - i\sigma}$$

use ChPT to fix $\operatorname{Re}(t^{-1})$ to the required accuracy

Results

Using ChPT to NLO as input (parameters $\times 10^3$ at $\mu = m_{\rho}$)

 $l_3^r = 0.18 \pm 1.11; l_4^r = 6.17 \pm 1.39$ from the literature

Colangelo et al. (2001) & Colangelo et al. (2010)

 $l_1^r = -3.7 \pm 0.2$; $l_2^r = 4.3 \pm 0.4$ fit to the data

Nebreda et al. (2011)

What does this tell about the nature of $f_0(500)$ and $\rho(770)$?

An interesting limit of QCD is $N_c \rightarrow \infty$, while $g_s^2 N_c = const$.

 $\rightarrow N_c$ -scaling of low energy constants known

e.g. Peris & de Rafael. PLB348(1995)539

 $\rightarrow N_C$ scaling for states: Cohen et al. PRD90(2014)036003

$$\stackrel{\overline{q}q:}{M} \sim \mathcal{O}(1); \ \Gamma \sim \mathcal{O}(1/N_c)$$

 $\stackrel{\overline{q}\overline{q}qq:}{M \sim \mathcal{O}(1); \ \Gamma \sim \mathcal{O}(1/N_c) }$

▷ gg: $M \sim \mathcal{O}(1); \ \Gamma \sim \mathcal{O}(1/N_c^2)$

$$(N_c - 1)\bar{q}q:$$

$$M \sim \mathcal{O}(N_c); \ \Gamma \sim \mathcal{O}(1)$$

 ρ, K^* consistent with $\bar{q}q$; σ, κ do not match to any \rightarrow rescattering?

see, e.g., Neubert Phys. Rep. 245(1994)259

One may derive from the QCD Lagrangian:

 $\mathcal{L}_{\text{QCD}} = \bar{q}_f \left\{ iv \cdot \partial + gv \cdot A^a t^a \right\} q_f + \mathcal{O}(\Lambda_{\text{QCD}}/m_f)$

At leading order interaction spin and flavor independent!

heavy quark spin and J_{light} of light quarks conserved independently

Terms at $\mathcal{O}(\Lambda_{\rm QCD}/m_f)$ contain

- \rightarrow kinetic energy of heavy quark
- \rightarrow term breaking spin symmetry

Consequence: mesons form spin multiplets with

 $m_{D^*} - m_D \sim \Lambda_{QCD}$, $m_{B^*}^2 - m_B^2 \simeq m_{D^*}^2 - m_D^2$

which works nicely - also for excited states

 \rightarrow Amount of spin symmetry violation important diagnostic tool!

Lecture series on QCD Exotics in the Heavy Quark SectorPart I: Tools – p. 30/32

Example: Strange-Charm states

_ecture series on QCD Exotics in the Heavy Quark SectorPart I: Tools - p. 31/32

Summary lecture I

- There are various options to study QCD at low energies
 - 1. Phenomenological models (not part of this talk - will appear later in the series)
 - 2. Lattice QCD
 - 3. Effective Field Theories (ChPT, HQEFT)
- Very promising: Combinations of #2 and #3

Next lecture:

- \rightarrow Discussion of $D_s(2317)$ as hadronic molecule
- → What it takes further support this conjecture