

Lecture series onQCD Exotics in the Heavy Quark SectorPart III: The $\bar{Q}Q$ sector

Christoph Hanhart

Forschungszentrum Jülich

Lecture series on QCD Exotics in the Heavy Quark SectorPart III: The QQ sector – p. 1/25

Outline

Lecture I: Tools

- → Lattice QCD
- → Effective field theories (ChPT, HQEFT)
- \rightarrow Unitarisation
- \rightarrow Large N_c
- Lecture II: The single heavy sector
- → Goldstone–Boson D-meson scattering
- → The positive parity D-mesons
- → Predictions and tests
- Lecture III: The $\bar{Q}Q$ sector
- \rightarrow The XYZ-stories

In this lecture series the focus is on mesons

Charmonium before 2003

Quark-Model: Eichten et al. PRD 17 (1978)

Potential of two static color sources

Lecture series on QCD Exotics in the Heavy Quark Sector Part III: The $\overline{Q}Q$ sector – p. 4/25

EFT: (p)NRQCD

Relevant scales: $M_Q \gg p \sim M_Q v \sim 1/r \gg E \sim M_Q v^2$

→ For systems with small radii: precision calculations

 \rightarrow Transition to non-perturbative regime can be studied

However, there are many exotics ..

- → All exotic candidates above open flavor thresholds
- → Many (not all) states near S-wave thresholds of narrow

States Filin et al., PRL 105, 019101 (2010) Guo et al., PRD84, 014013 (2011)

- → States not near all those thresholds
- \rightarrow There are charged states that contain $\bar{Q}Q$
- → Lightest negative parity exotic (Y(4260)) significantly heavier than lightest positive parity exotics (X(3872) & $Z_c(3900)$)

 \overline{Q}

Tetraquark

 \rightarrow Compact object formed from (Qq) and $(\bar{Q}\bar{q})$

Hadro-Quarkonium

 \rightarrow Compact $(\bar{Q}Q)$ surrounded by light quarks

Hadronic-Molecule

 \rightarrow Extended object made of $(\bar{Q}q)$ and $(Q\bar{q})$

Bohr radius = $1/\gamma = 1/\sqrt{2\mu E_b}$ $\gg 1 \text{ fm} \gtrsim \text{confinement radius}$ for near threshold states

I will review ideas on how to disentangle these structures

(Some) XYZ-states threshold effects? **J** JÜLICH Forschungszentrum

Bugg PLB598(2004)8; Chen et al. PRD84(2011)094003; Swanson PRD91(2015)034009

Could it be that the origin of Z(3900) is a threshold cusp

followed by perturbative rescattering? \implies study elastic channel

For criticism to our point of view see Swanson Int.J.Mod.Phys.E25(2016)1642010 Lecture series on QCD Exotics in the Heavy Quark Sector Part III: The Q Sector - p. 8/25

Why the argument is wrong

Lecture series on QCD Exotics in the Heavy Quark Sector Part III: The $\overline{Q}Q$ sector – p. 9/25

Why the argument is wrong

Lecture series on QCD Exotics in the Heavy Quark Sector Part III: The $\overline{Q}Q$ sector – p. 10/25

Why the argument is wrong

Lecture series on QCD Exotics in the Heavy Quark Sector Part III: The $\overline{Q}Q$ sector – p. 11/25

(Some) driven by triangle–effects?

Nakamura and K. Tsushima, arXiv:1901.07385

Can explain $Z_c(4430)$ & $Z_c(4200)$ including Argand plot

 \rightarrow there should be no structure in $Y(4260)\pi$ and $\psi(3770)\pi$ from $Z_c(4430)$ and $Z_c(4200)$, respectively Schmid, PR154(1967)1363

For alternative mechanism for $Z_c(4430)$ see Pakhlov, PLB702(2011)139

... maybe — but certainly not for all XYZ-states, since

- mechanism very sensitive to external invariant masses, and, e.g.,
- \rightarrow X(3872) is seen in *B*-decays and Y(4260) radiative decays
- $\rightarrow Z_c(3900)^+$ is seen at different energies in e^+e^-
- \rightarrow not applicable to vectors states seen in e^+e^-

Lecture series on QCD Exotics in the Heavy Quark Sector Part III: The QQ sector – p. 13/25

Heavy Tetraquarks

- → Straightforward extension of the quark model M. Gell-Mann, PL8(1964)214
- → Mesons as diquark—anti-diquark systems Jaffe, PRD15(1977)267, Maiani et al., PRD71(2005)014028
- → Separated by potential well Selem and Wilczek, hep-ph/0602128; Maiani et al., PLB778(2018)247 alternative approaches, e.g., Cui et al., HEPNP31(2007)7; Stancu, JPG37(2010) 075017
- → To account for spectrum spin-spin interaction needs to be dominant within diquarks
 Maiani et al. PRD89(2014)114010
- \rightarrow and tensor force, S_{12} , needs to be considered

Ali et al. EPJC78(2018)29

$$M = 2M_{\mathcal{Q}} + \frac{B_{\mathcal{Q}}}{2}\mathbf{L}^2 + 2a_Y\mathbf{L}\cdot\mathbf{S} + \frac{b_Y}{4}S_{12} + 2\kappa_{cq}\left(\mathbf{S}_{\mathbf{q}}\cdot\mathbf{S}_{\mathbf{c}} + c.c.\right)$$

- Already many ground states
- Each level has isovector and isoscalar state (cf. ρ and ω)

Results for negative parity states

 \rightarrow Without tensor force very light 3^{--}

Cleven et al., PRD 92(2015)014005

→ Many more states predicted than observed! Maybe since di-quark picture too restrictive/constraining? Richard et al., PRD95(2017)054019

Hadrocharmonium

M. B. Voloshin, PPNP61(2008)455

 \rightarrow Extra states are viewed as compact $\bar{Q}Q$ surrounded by light quarks

- Q Q Q
- \rightarrow Provides natural explanation why, e.g., Y(4260)is seen in $J/\psi\pi\pi$ final state but not in $\overline{D}D$
- → Heavy quark spin symmetry demands that spin of the core is conserved in decay to charmonia
- → Explaining $e^+e^- \rightarrow h_c \pi \pi$ needs mixing between states with $s_{\bar{c}c} = 0$ and $s_{\bar{c}c} = 1$ leading to Y(4260) and Y(4360)Li & Voloshin MPLA29(2014)1450060

Lecture series on QCD Exotics in the Heavy Quark Sector Part III: The $\overline{Q}Q$ sector – p. 15/25

Hadrocharmonium: new states

The above mentioned mixing suggests for the unmixed states: $\Psi_3 \sim (1^{--})_{c\bar{c}} \otimes (0^{++})_{q\bar{q}} \qquad \Psi_1 \sim (1^{+-})_{c\bar{c}} \otimes (0^{-+})_{q\bar{q}}$, where the heavy cores are ψ' and h_c .

 \rightarrow get spin partners via $\psi' \rightarrow \eta'_c$ and $h_c \rightarrow \{\chi_{c0}, \chi_{c1}, \chi_{c2}\}$

Cleven et al., PRD 92(2015)014005

Special feature: very light 0^{-+} state that should not decay to $D^*\overline{D}$

Lecture series on QCD Exotics in the Heavy Quark Sector Part III: The QQ sector – p. 16/25

Hadronic Molecules

recent review article: Guo et al., Rev. Mod. Phys. 90(2018)015004

- $\rightarrow\,$ are few-hadron states, bound by the strong force
- \rightarrow do exist: light nuclei. e.g. deuteron as pn & hypertriton as Λd bound state

- \rightarrow are located typically close to relevant continuum threshold; e.g., for $E_B = m_1 + m_2 - M$ ($\gamma = \sqrt{2\mu E_B} \ \mu = m_1 m_2/(m_1 + m_2)$)
 - $\triangleright E_B^{\text{deuteron}} = 2.22 \text{ MeV} (\gamma = 40 \text{ MeV})$
 - $\triangleright E_B^{\text{hypertriton}} = (0.13 \pm 0.05) \text{ MeV} (\text{to } \Lambda d) (\gamma = 26 \text{ MeV})$

 \rightarrow can be identified in observables (Weinberg compositeness):

$$\frac{g_{\text{eff}}^2}{4\pi} = \frac{4M^2\gamma}{\mu}(1-\lambda^2) \rightarrow a = -2\left(\frac{1-\lambda^2}{2-\lambda^2}\right)\frac{1}{\gamma}; \quad r = -\left(\frac{\lambda^2}{1-\lambda^2}\right)\frac{1}{\gamma}$$

where $(1 - \lambda^2)$ =probability to find molecular component in bound state wave function

Are there mesonic molecules?

General considerations

Constituents must be narrow. Heavy candidates (M, Γ in MeV)

 $D (0^-, M = 1865, \Gamma \simeq 0); D^*(1^-, M = 2007, \Gamma \simeq 0.1)$ $D_1(1^+, M = 2420, \Gamma \simeq 30); D_2^*(2^+, M = 2460, \Gamma \simeq 50)$

 $D_0(2400)$ and $D_1(2430)$ with $\Gamma = 300$ MeV too broad ...

Explains mass gap between $J^P = 1^+$ and 1^- states: $M_{Y(4260)} - M_{X(3872)} = 388 \text{ MeV}$ $\simeq M_{D_1(2420)} - M_{D^*} = 410 \text{ MeV}$

Predicts, e.g.,

$$M(0^-) - M(1^-) \simeq$$

 $M_{D^*} - M_D \simeq +100$ MeV,

if it exists

Note: for hadrocharmonium: $M(0^-) - M(1^-) \simeq -100 \text{ MeV}$

Cleven et al., PRD 92 (2015) 014005

Production at high P_T

 $\sigma(\bar{p}p \to X)$

- $\sim \left| \int d^3 \mathbf{k} \langle X | D^0 \bar{D}^{*0}(\mathbf{k}) \rangle \langle D^0 \bar{D}^{*0}(\mathbf{k}) | \bar{p} p \rangle \right|^2$
- $\simeq \left| \int_{\mathcal{R}} d^3 \mathbf{k} \langle X | D^0 \bar{D}^{*0}(\mathbf{k}) \rangle \langle D^0 \bar{D}^{*0}(\mathbf{k}) | \bar{p}p \rangle \right|^2 \quad \mathcal{R} \sim \sqrt{mE_b} \sim 40 \text{ MeV}$
- $\leq \int_{\mathcal{R}} d^{3}\mathbf{k} |\Psi(\mathbf{k})|^{2} \int_{\mathcal{R}} d^{3}\mathbf{k} \left| \langle D^{0} \bar{D}^{*0}(\mathbf{k}) | \bar{p}p \rangle \right|^{2}$

$$\leq \int_{\mathcal{R}} d^3 \mathbf{k} \left| \langle D^0 ar{D}^{*0}(\mathbf{k}) | ar{p} p
angle
ight|^2 \,,$$

Bignamini et al., PRL 103 (2009) 162001

 \mathcal{R} must be large enough to saturate wave function Bignamini et al.: \rightarrow Test on deuteron M. Albaladejo et al., CPC41(2017)121001 One finds: $\mathcal{R} \sim 400 \text{ MeV}$ using Herwig (Pythia) $\mathcal{R} \sim 60 \text{ MeV} \rightarrow \sigma_X \sim 0.1(0.04) \text{ nb}$ $\mathcal{R} \sim 300 \text{ MeV} \rightarrow \sigma_X \sim 13(4) \text{ nb}^{\dagger}$ $\mathcal{R} \sim 600 \text{ MeV} \rightarrow \sigma_X \sim 55(15) \text{ nb}^{\dagger}$ [†]: D^+D^- channel included vs $\sigma_{\mathrm{exp.}}^{\mathrm{CMS}} \sim 13 - 39 \text{ nb} \rightarrow$ fully consistent!

Remarks on decays

 \rightarrow Natural explanation for $Y(4260) \rightarrow \pi Z_c(3900)$ and

Wang, C. H., Zhao, PRL111 (2013) no.13, 132003

 $\begin{array}{ll} \mbox{prediction of } Y(4260) \rightarrow \gamma X(3872) & \mbox{Guo et al., PLB 725 (2013) 127-133} \\ & \mbox{confirmed at BESIII Ablikim et al. PRL 112 (2014), 092001} \end{array}$

→ Not all observables sensitive to molecular component! e.g. $X(3872) \rightarrow \gamma \psi(nS)$ has leading order counter term

Lecture series on QCD Exotics in the Heavy Quark Sector Part III: The \overline{Q} Q sector - p. 20/25

ChPT for heavy-heavy molecules

LO Potential:

Results for Z_b spectra:

Epelbaum et al., RMP81(2009)1773

coupled channels: $B^*\bar{B}, B^*\bar{B}^*$

Q. Wang et al., PRD98(2018)074023

Three different fits:

Black solid: Constant contact terms only

Red dotted:

Constant contact terms + $1-\pi$ -exch. in *S*-wave

Blue dashed: Constant contact terms + full 1-π-exch.

Lecture series on QCD Exotics in the Heavy Quark Sector Part III: The $\overline{Q}Q$ sector – p. 21/25

What's wrong?

At $B^*\bar{B}^*$ —threshold $B^*\bar{B}$ momentum ~ 500 MeV \implies No suppression of $S(B^*\bar{B}^*) - D(B^*\bar{B})$ transition

- Strong $B^*\bar{B}^* \to B^*\bar{B}$
- strong Λ dependence black: $\Lambda = 800 \text{ MeV}$ blue: $\Lambda = 1000 \text{ MeV}$ green: $\Lambda = 1200 \text{ MeV}$

Promote S - D contact term to leading order:

- Fit improves significantly
- Λ dependence gone
- $Z'_b \to B^* \bar{B}$ very small
- NLO S S CT small

Why $Z'_b \not\rightarrow B^* \overline{B}$ not understood

Spin symmetry violation

EFT for I=1 $B^{(*)}\bar{B}^{(*)}$ scattering \rightarrow Spin multiplets $Z_b^{(')} J^{PC} = 1^{+-} \rightarrow W_{bJ} J^{PC} = J^{++}$

Bondar et al., PRD 84 (2011) 054010; Voloshin, PRD 84 (2011) 031502; Mehen & Powell, PRD 84 (2011) 114013; Nieves & Valderrama, PRD 86 (2012) 056004.

When lifting spin symmetry, specific pattern emerges:

Baru et al., PLB763(2016)20, JHEP 1706(2017)158, PRD99(2019)094013

Lecture series on QCD Exotics in the Heavy Quark Sector Part III: The $\overline{Q}Q$ sector - p. 23/25

Lineshapes of Y(4260)

IF the Y(4260) is a $D_1\overline{D}$ molecule it MUST have a

large coupling to this channel \Longrightarrow great impact on lineshapes

Inelastic channel Cleven et al., PRD90 (2014) 074039; see also Qin et al. PRD94(2016)054035

Lecture series on QCD Exotics in the Heavy Quark SectorPart III: The $\overline{Q}Q$ sector – p. 24/25

Summary and Perspectives

- → These are exciting times in (heavy meson) spectroscopy
- → The recent and future data have the potential to allow us to identify the prominent components in XYZ states

to-do for experiment

- → Continue with your great performance! Especially needed:
 - data for different quantum numbers and
 - data for line shapes

to-do for theory

- → Provide more predictions for the different scenarios
- → Go beyond most simple approaches e.g. study interplay of regular quarkonia with exotics first step: Cincioglu et al., EPJC76(2016)576

Thanks a lot for your attention