

Study of B_c decays

Aidos Issadykov & Mikhail A. Ivanov

in collaboration with: S. Dubnicka, A.Z. Dubnickova, A. Liptaj

Outline

• Introduction

Semileptonic decays

• Rare decays

Conclusion

Semileptonic decays of B meson

Tree-level decays $b \rightarrow cv\ell$:

abundant

- •very well known in the SM
- violation of the lepton universality in tau sector

$$R(D^{(*)}) \equiv \mathcal{B}(\bar{B}^0 \to D^{(*)}\tau^-\bar{\nu}_{\tau})/\mathcal{B}(\bar{B}^0 \to D^{(*)}\mu^-\bar{\nu}_{\tau})$$

Semileptonic decays of B meson

Combined data of $R_D \& R_{D^*}$

 (One of) the largest discrepancies between SM and measurement

• Up to 4.1 σ disagreement

Rare decays of B meson

Loop-level decays $b \rightarrow s\ell^+\ell^-$:

- •forbidden at tree-level in SM
- •sensitive to NP contributions in loops

Rare decays of B meson

Invariant mass of lepton pair

*Phys.Rev.Lett. 111 (2013) 191801

ATLAS measurement differs by 2.7σ from the SM prediction.

CMS results are consistent with SM prediction and other measurements

New physics in $b \rightarrow s$ transition

Comparison between the SM predictions (gray boxes), the experimental measurements (blue data points) and the predictions for the scenario with $C_9^{NP} = -1.5$ and other $C_i^{NP} = 0$ (red squares).

*J. Matias, Phys. Rev. D 86 (2012) 094024

$${\rm B}^0{}_S o \varphi \ell^+ \ell^-$$

*R. Aaij et al. (LHCb Collaboration) JHEP 09 (2015) 179 *SM ~ Eur.Phys.J. C75 (2015) 382 & JHEP 1608 (2016) 098

R_{K}

 $\boldsymbol{R}_{\boldsymbol{K}^*}$ and $\boldsymbol{R}_{\boldsymbol{K}}$

Combination of R_{K^*} , R_K and [PRL 118 (2017) 111801] is ~4 σ from SM

Experimental data

Relative decay rates of B_c meson.

Parameter	Measurements	Average
$\mathcal{B}(B_c^- \to J/\psi L)$	$D_s^-)/\mathcal{B}(B_c^- \to J/\psi\pi^-)$	
	LHCb [5]: $2.90 \pm 0.57 \pm 0.24$	3.00 ± 0.55
	ATLAS [13]: $3.8 \pm 1.1 \pm 0.4$	5.09 ± 0.05
$\mathcal{B}(B_c^- \to J/\psi L)$	$D_s^{*-}/\mathcal{B}(B_c^- \to J/\psi D_s^-)$	
	ATLAS [13]: $2.8^{+1.2}_{-0.8} \pm 0.3$	2.60 ± 0.78
	LHCb [5]: $2.37 \pm 0.56 \pm 0.10$	2.09 ± 0.10
$\mathcal{B}(B_c^- \to J/\psi I)$	$D_s^{*-}/\mathcal{B}(B_c^- \to J/\psi\pi^-)$	
	ATLAS [13]: $10.4 \pm 3.1 \pm 1.6$	10.4 ± 3.5
$\mathcal{B}(B_c^- \to J/\psi k)$	$(K^-)/\mathcal{B}(B_c^- \to J/\psi\pi^-)$	
L	HCb [29]: $0.069 \pm 0.019 \pm 0.005$	0.069 ± 0.020
$\mathcal{B}(B_c^- \to J/\psi k)$	$(K^-K^+\pi^-)/\mathcal{B}(B_c^- \to J/\psi\pi^-)$	
	LHCb [12]: $0.53 \pm 0.10 \pm 0.05$	0.53 ± 0.11
$\mathcal{B}(B_c^- \to J/\psi\pi)$	$f^+\pi^-\pi^-)/\mathcal{B}(B_c^- \to J/\psi\pi^-)$	
	LHCb [30]: $3.0 \pm 0.6 \pm 0.4$	
	LHCb [10]: $2.41 \pm 0.30 \pm 0.33$	2.57 ± 0.35
	CMS [31]: $2.55 \pm 0.80 {}^{+0.33}_{-0.33}$	
$\mathcal{B}(B_c^- \to \psi(2S$	$(\pi^{-})/\mathcal{B}(B_{c}^{-} \to J/\psi\pi^{-})$	
	LHCb [32]: $0.268 \pm 0.032 \pm 0.009$	0.268 ± 0.033

Semileptonic decays of B_c meson

$$\frac{\mathcal{B}(B_c^+ \to J/\psi \tau^+ \nu_\tau)}{\mathcal{B}(B_c^+ \to J/\psi \mu^+ \nu_\mu)} = 0.71 \pm 0.17(stat) \pm 0.18(syst).$$

*R. Aaij et al. Phys.Rev.Lett. 120 (2018) 121801

Branching ratios of semileptonic B_c decays

Table 3. Branching ratios (in %) of semileptonic B_c decays into ground state charmonium states.

Mode	This work	[23]	[7]	[24, 25]	[26]	[27]	[28]
$B_c^- \to \eta_c \ell \nu$	0.95	0.81	0.98	0.75	0.97	0.59	0.44
$B_c^- \to \eta_c \tau \nu$	0.24	0.22	0.27	0.23		0.20	0.14
$B_c^- \to J/\psi\ell\nu$	1.67	2.07	2.30	1.9	2.35	1.20	1.01
$B_c^- \to J/\psi \tau \nu$	0.40	0.49	0.59	0.48		0.34	0.29
$B_c^- \to \overline{D}^- \ell \nu$	0.0033	0.0035	0.018		0.004	0.006	0.0032
$B_c^- \to \overline{D}^- \tau \nu$	0.0021	0.0021	0.0094	0.002			0.0022
$B_c^- \to \overline{D}^{*-} \ell \nu$	0.006	0.0038	0.034		0.018	0.018	0.011
$B_c^- \to \overline{D}^{*-} \tau \nu$	0.0034	0.0022	0.019	0.008			0.006

* A. Issadykov, Mikhail A. Ivanov, G. Nurbakova, EPJ Web Conf. 158 (2017) 03002

Branching ratios of semileptonic B_c decays

Figure 2: Theoretical predictions vs. LHCb data [15] for the ratio $\mathcal{R}_{\mathcal{J}/\psi}$. Solid line-central experimental value, dotted lines-experimental error bar.

*A. Issadykov, Mikhail A. Ivanov, Phys.Lett. B783 (2018) 178-182

New Physics effects in semileptonic B_c decays

*C.T. Tran, Mikhail A. Ivanov, J. Körner, P. Santorelli, Phys.Rev. D97 (2018) 054014

Nonleptonic decays of B_c meson

LHCb collaboration(nonleptonic):

 $\frac{B(B_c^+ \to J/\psi K^+)}{B(B_c^+ \to J/\psi \pi^+)} = 0.069 \pm 0.0019(stat) \pm 0.005(syst).$

*R. Aaij et al. [LHCb Collaboration], JHEP 1309 (2013) 075

The predicted ratio of these branching fractions is proportional to

$$\frac{\mathcal{B}(B_c^+ \to J/\psi K^+)}{\mathcal{B}(B_c^+ \to J/\psi \pi^+)} \approx \left| \frac{V_{us} f_{K^+}}{V_{ud} f_{\pi^+}} \right|^2 = 0.077$$

$$\frac{B(B_c^+ \to J/\psi K^+)}{B(B_c^+ \to J/\psi \pi^+)} = 0.079 \pm 0.007(stat) \pm 0.003(syst).$$

*R. Aaij et al. [LHCb Collaboration], JHEP 1609 (2016) 153

Ratios of branching fractions

Figure 3: Theoretical predictions vs. LHCb data [10] and [11] for the ratio $\mathcal{R}_{\mathcal{K}^+/\pi^+}$. Two solid lines- central experimental values, dash-dotted lines-experimental error bar from [10], dotted lines-experimental error bar from [11].

*A. Issadykov, Mikhail A. Ivanov, Phys.Lett. B783 (2018) 178-182

Ratios of branching fractions

Figure 4: Theoretical predictions vs. LHCb data [1] for the ratio $\mathcal{R}_{\pi^+/\mu^+\nu_{\mu}}$. Solid linecentral experimental value, dotted lines-experimental error bar.

*A. Issadykov, Mikhail A. Ivanov, Phys.Lett. B783 (2018) 178-182

Nonleptonic decays of B_c meson

Ref.	$\mathcal{R}_{\pi^+/\mu^+ u}$	$\mathcal{R}_{\mathcal{K}^+/\pi^+}$	\mathcal{R}_{η_c}	$\mathcal{R}_{J/\psi}$
LHCb [1]	0.0469 ± 0.0054			
LHCb[10]		0.069 ± 0.019		
LHCb [11]		0.079 ± 0.0076		
LHCb[15]				0.71 ± 0.25
This work	0.0605 ± 0.012	0.076 ± 0.015	0.26 ± 0.05	0.24 ± 0.05
[3]	0.0525	0.074		
[4]	0.0866	0.058		
[5]	0.0625	0.096	0.34	0.28
[6]	0.058	0.075		
[7]	0.068	0.085	0.31	0.25
[8]	0.0496	0.077		
[9]	0.082	0.076	0.27	0.24
[14]		0.075		
[16]	$0.064^{+0.007}_{-0.008}$	$0.072^{+0.019}_{-0.008}$		
[18, 27]	$0.046^{+0.003}_{-0.002}$	0.082	0.63 ± 0.0	$0.29^{+0.01}_{-0.00}$
[19]			0.31	0.29
[22]			0.28	0.26

In the SM, the effective Hamiltonian for the $b \to q\ell^+\ell^-$ decay can be written as

$$\mathcal{H}_{eff}^{SM} = -\frac{4G_F}{\sqrt{2}} V_{tq} V_{tb}^* \left\{ \sum_{i=1}^{10} C_i(\mu) \mathcal{O}_i(\mu) + \lambda_u^* \sum_{i=1}^2 C_i(\mu) [\mathcal{O}_i(\mu) - \mathcal{O}_i^{(u)}(\mu)] \right\},$$
where $\lambda_u^* \equiv \frac{V_{ub}^* V_{uq}}{V_{tb}^* V_{tq}}, \qquad q = s, d$

 $b \rightarrow s$ transition :

 $\lambda_{ts} = V_{tb}^* V_{ts} = 0.041 \qquad \qquad \lambda_{us} = V_{ub}^* V_{us} = 0.00088$

 $b \rightarrow d$ transition :

 $\lambda_{td} = V_{tb}^* V_{td} = 0.00825 \qquad \qquad \lambda_{ud} = V_{ub}^* V_{ud} = 0.00384$

In the SM, the effective Hamiltonian for the $b \to q \ell^+ \ell^-$ decay can be written as

$$\begin{aligned} \mathcal{H}_{eff}^{SM} &= -\frac{4G_F}{\sqrt{2}} V_{tq} V_{tb}^* \left\{ \sum_{i=1}^{10} C_i(\mu) \mathcal{O}_i(\mu) + \lambda_u^* \sum_{i=1}^2 C_i(\mu) [\mathcal{O}_i(\mu) - \mathcal{O}_i^{(u)}(\mu)] \right\}, \\ \text{where } \lambda_u^* &\equiv \frac{V_{ub}^* V_{uq}}{V_{tb}^* V_{tq}}, \qquad q = s, d \\ \mathcal{O}_1^u &= (\bar{q}_{a_1} \gamma^\mu P_L u_{a_2}) (\bar{u}_{a_2} \gamma_\mu P_L b_{a_1}), \quad \mathcal{O}_2^u &= (\bar{q} \gamma^\mu P_L u) (\bar{u} \gamma_\mu P_L b), \\ \mathcal{O}_1 &= (\bar{q}_{a_1} \gamma^\mu P_L c_{a_2}) (\bar{c}_{a_2} \gamma_\mu P_L b_{a_1}), \quad \mathcal{O}_2 = (\bar{q} \gamma^\mu P_L c) (\bar{c} \gamma_\mu P_L b), \\ \mathcal{O}_3 &= (\bar{q} \gamma^\mu P_L b) \sum_q (\bar{q} \gamma_\mu P_L q), \qquad \mathcal{O}_4 = (\bar{q}_{a_1} \gamma^\mu P_L b_{a_2}) \sum_q (\bar{q}_{a_2} \gamma_\mu P_L q_{a_1}), \\ \mathcal{O}_5 &= (\bar{q} \gamma^\mu P_L b) \sum_q (\bar{q} \gamma_\mu P_R q), \qquad \mathcal{O}_6 = (\bar{q}_{a_1} \gamma^\mu P_L b_{a_2}) \sum_q (\bar{q}_{a_2} \gamma_\mu P_R q_{a_1}), \\ \mathcal{O}_7 &= \frac{e}{16\pi^2} \bar{m}_b (\bar{q} \sigma^{\mu\nu} P_R b) F_{\mu\nu}, \qquad \mathcal{O}_8 &= \frac{g}{16\pi^2} \bar{m}_b (\bar{q}_a \gamma^\mu P_L b) (\bar{\ell} \gamma_\mu \gamma_5 \ell), \end{aligned}$$

Effective Hamiltonian

Using the operator product expansion (OPE) formalism and renormalization group techniques, the effective Hamiltonian of the weak decays is derived.

$$\mathsf{A}(\mathsf{f}\to\mathsf{i}) = \langle \mathsf{f} | \,\mathcal{H}_{\mathrm{eff}} \, | \mathsf{i} \rangle = \frac{\mathsf{G}_{\mathsf{F}}}{\sqrt{2}} \lambda_{\mathrm{CKM}} \sum_{\mathsf{k}} \underbrace{\mathsf{C}_{\mathsf{k}}(\mu)}_{\mathrm{SD}} \underbrace{\langle \mathsf{f} | \mathsf{Q}_{\mathsf{k}}(\mu) | \mathsf{i} \rangle}_{\mathrm{LD}}$$

- SD = Short-Distance contributions
- LD = Long-Distance contributions
- The Wilson coefficients C_i(µ) are calculated by using "matching"the full and effective theories, and the renormalization group.
- Q_k(µ) are the local operators generated by electroweak interactions and QCD
- The problem is to evaluate the matrix elements $\langle f|Q_k(\mu)|i\rangle$

QCD penguin diagram Q₃ – Q₆ operators

Semileptonic electroweak penguin diagrams Q $_7 - Q _{10}$ operators

$b \rightarrow s$ transition

Loop-level decays $b \rightarrow s\ell^+\ell^-$:

- •forbidden at tree-level in SM
- •sensitive to NP contributions in loops

Matrix element of $B \rightarrow K^* \ell^+ \ell^-$ transition

$$\mathcal{M} = \frac{G_F}{\sqrt{2}} \cdot \frac{\alpha \lambda_t}{\pi} \cdot \left\{ C_9^{\text{eff}} < K^* \, | \, \bar{s} \, \gamma^\mu P_L \, b \, | \, B > \left(\bar{\ell} \gamma_\mu \ell \right) \right. \\ \left. - \frac{2 \bar{m}_b}{q^2} \, C_7^{\text{eff}} < K^* \, | \, \bar{s} \, i \sigma^{\mu\nu} q_\nu \, P_R \, b \, | \, B > \left(\bar{\ell} \gamma_\mu \ell \right) \right. \\ \left. + \, C_{10} < K^* \, | \, \bar{s} \, \gamma^\mu P_L \, b \, | \, B > \left(\bar{\ell} \gamma_\mu \gamma_5 \ell \right) \right\},$$

where $C_7^{\text{eff}} = C_7 - C_5/3 - C_6$.

Wilson coefficients

$$C_{9}^{\text{eff}} = C_{9} + C_{0} \left\{ h(\hat{m}_{c}, s) + \frac{3\pi}{\alpha^{2}} \kappa \sum_{V_{i}=\psi(1s),\psi(2s)} \frac{\Gamma(V_{i} \to l^{+}l^{-}) m_{V_{i}}}{m_{V_{i}}^{2} - q^{2} - im_{V_{i}}\Gamma_{V_{i}}} \right\}$$

$$- \frac{1}{2}h(1, s) \left(4C_{3} + 4C_{4} + 3C_{5} + C_{6}\right)$$

$$- \frac{1}{2}h(0, s) \left(C_{3} + 3C_{4}\right) + \frac{2}{9} \left(3C_{3} + C_{4} + 3C_{5} + C_{6}\right) ,$$

where $C_0 \equiv 3C_1 + C_2 + 3C_3 + C_4 + 3C_5 + C_6$. Here the charm-loop function is written as

$$\begin{split} h(\hat{m}_c, s) &= -\frac{8}{9} \ln \frac{\bar{m}_b}{\mu} - \frac{8}{9} \ln \hat{m}_c + \frac{8}{27} + \frac{4}{9} x \\ &- \frac{2}{9} (2+x) |1-x|^{1/2} \begin{cases} \left(\ln \left| \frac{\sqrt{1-x}+1}{\sqrt{1-x}-1} \right| - i\pi \right), \text{ for } x \equiv \frac{4\hat{m}_c^2}{s} < 1, \\ 2 \arctan \frac{1}{\sqrt{x-1}}, & \text{ for } x \equiv \frac{4\hat{m}_c^2}{s} > 1, \end{cases} \\ h(0,s) &= \frac{8}{27} - \frac{8}{9} \ln \frac{\bar{m}_b}{\mu} - \frac{4}{9} \ln s + \frac{4}{9} i\pi, \\ \text{ where } \hat{m}_c = \bar{m}_c/m_1, s = q^2/m_1^2 \text{ and } \kappa = 1/C_0. \end{split}$$

Matrix element of $B \rightarrow K^* \ell^+ \ell^-$ transition

$$\mathcal{M} = \frac{G_F}{\sqrt{2}} \cdot \frac{\alpha \lambda_t}{2\pi} \left\{ T_1^{\mu} \left(\bar{\ell} \gamma_{\mu} \ell \right) + T_2^{\mu} \left(\bar{\ell} \gamma_{\mu} \gamma_5 \ell \right) \right\},$$
$$T_i^{\mu} = T_i^{\mu\nu} \epsilon_{2\nu}^{\dagger}, \qquad (i = 1, 2),$$

$$T_i^{\mu\nu} = \frac{1}{m_1 + m_2} \left\{ -Pq \, g^{\mu\nu} \, A_0^{(i)} + P^{\mu} P^{\nu} \, A_+^{(i)} + q^{\mu} P^{\nu} \, A_-^{(i)} + i \varepsilon^{\mu\nu\alpha\beta} P_{\alpha} q_{\beta} \, V^{(i)} \right\} \,,$$

Matrix element of $B \rightarrow K^* \ell^+ \ell^-$ transition

$$\begin{split} T_i^{\mu\nu} &= \frac{1}{m_1 + m_2} \left\{ -Pq \, g^{\mu\nu} \, A_0^{(i)} + P^{\mu} P^{\nu} \, A_+^{(i)} + q^{\mu} P^{\nu} \, A_-^{(i)} + i \varepsilon^{\mu\nu\alpha\beta} P_{\alpha} q_{\beta} \, V^{(i)} \right\} \,, \\ V^{(1)} &= C_9^{\text{eff}} \, V + C_7^{\text{eff}} \, g \, \frac{2\bar{m}_b(m_1 + m_2)}{q^2} \,, \\ A_0^{(1)} &= C_9^{\text{eff}} \, A_0 + C_7^{\text{eff}} \, a_0 \, \frac{2\bar{m}_b(m_1 + m_2)}{q^2} \,, \\ A_+^{(1)} &= C_9^{\text{eff}} \, A_+ + C_7^{\text{eff}} \, a_+ \, \frac{2\bar{m}_b(m_1 + m_2)}{q^2} \,, \\ A_-^{(1)} &= C_9^{\text{eff}} \, A_- + C_7^{\text{eff}} \, (a_0 - a_+) \, \frac{2\bar{m}_b(m_1 + m_2)}{q^2} \, \frac{Pq}{q^2} \,, \\ V^{(2)} &= C_{10} \, V, \qquad A_0^{(2)} = C_{10} \, A_0, \qquad A_{\pm}^{(2)} = C_{10} \, A_{\pm}. \end{split}$$

Form factors

$$\langle V(p_2, \epsilon_2)_{[\bar{q}_1 q_3]} | \bar{q}_2 O^{\mu} q_1 | P_{[\bar{q}_3 q_2]}(p_1) \rangle = = \frac{\epsilon_{\nu}^{\dagger}}{m_1 + m_2} \left(-g^{\mu\nu} P \cdot q A_0(q^2) + P^{\mu} P^{\nu} A_+(q^2) + q^{\mu} P^{\nu} A_-(q^2) \right. \\ \left. + i \, \varepsilon^{\mu\nu\alpha\beta} P_{\alpha} q_{\beta} V(q^2) \right),$$

$$\langle V(p_2, \epsilon_2)_{[\bar{q}_1 q_3]} | \bar{q}_2 (\sigma^{\mu\nu} q_\nu (1+\gamma^5)) q_1 | P_{[\bar{q}_3 q_2]}(p_1) \rangle = = \epsilon_{\nu}^{\dagger} \Big(-(g^{\mu\nu} - q^{\mu} q^{\nu}/q^2) P \cdot q a_0(q^2) + (P^{\mu} P^{\nu} - q^{\mu} P^{\nu} P \cdot q/q^2) a_+(q^2) + i \varepsilon^{\mu\nu\alpha\beta} P_{\alpha} q_{\beta} g(q^2) \Big).$$

$$P = p_1 + p_2, q = p_1 - p_2, \epsilon_2^{\dagger} \cdot p_2 = 0, p_i^2 = m_i^2.$$

Diagrammatic representation of the matrix elements

Form factors

$b \rightarrow s$ transition

Mode	Our	Others		Expt. [73–75]
$B \to K^* \mu^+ \mu^-$	12.7×10^{-7}	$(11.9 \pm 3.9) \times 10^{-7}$	[76]	$(9.24 \pm 0.93(\text{stat}) \pm 0.67(\text{sys})) \times 10^{-7}$
		19×10^{-7}	[77]	
		11.5×10^{-7}	[78]	
		14×10^{-7}	[79]	
$B\to K^*\tau^+\tau^-$	1.35×10^{-7}	1.9×10^{-7}	[77]	_
		$1.0 imes 10^{-7}$	[78]	
		2.2×10^{-7}	[79]	
$B\to K^*\gamma$	$3.74 imes 10^{-5}$	11.4×10^{-5}	[80]	$(4.21 \pm 0.18) \times 10^{-5}$
		4.2×10^{-5}	[78]	
$B\to K^*\nu\bar\nu$	1.36×10^{-5}	1.5×10^{-5}	[78]	_
$B \to K \mu^+ \mu^-$	7.18×10^{-7}	$5.7 imes 10^{-7}$	[77]	$(4.29 \pm 0.07 (\text{stat}) \pm 0.21 (\text{sys})) \times 10^{-7}$
		$(3.5\pm 1.2)\times 10^{-7}$	[76]	
		4.4×10^{-7}	[78]	
		5×10^{-7}	[79]	
$B\to K\tau^+\tau^-$	$3.0 imes 10^{-7}$	$1.3 imes 10^{-7}$	[77]	_
		$1.0 imes 10^{-7}$	[78]	
		$1.3 imes 10^{-7}$	[79]	
$B \to K \nu \bar{\nu}$	$0.60 imes 10^{-5}$	$0.56 imes 10^{-5}$	[78]	_

Schematic view of $B \rightarrow K\pi + \ell^+\ell^- decay$

* A. Issadykov, Mikhail A. Ivanov, S. Sakhiyev, Phys.Rev. D91 (2015) 074007

b-s transition matrix elements

$$\langle S_{[\bar{q}_3q_2]}(p_2)|\bar{q}_2 O^{\mu}q_1|B_{[\bar{q}_1q_3]}(p_1)| = F^{BS}_+(q^2)P^{\mu} + F^{BS}_-(q^2)q^{\mu},$$

$$\langle S_{[\bar{q}_3q_2]}(p_2)|\bar{q}_2(i\sigma^{\mu\nu}q_\nu(1+\gamma^5))q_1|B_{[\bar{q}_1q_3]}(p_1)\rangle = -\frac{1}{m_1+m_2}(q^2P^\mu-q\cdot Pq^\mu)F_T^{BS}(q^2).$$

Branching fractions

Decay modes	Branching fractions				
	This work	[37]	[18]	[31]	
	$(\Lambda_S = 1.5 \text{ GeV})$				
$B_d^0 \to a_0^+(980)\mu^-\bar{\nu}_\mu$	0.52×10^{-4}	$(2.74\pm0.40)\times10^{-4}$		1.84×10^{-4}	
$B_d^0 \to a_0^+(980)\tau^-\bar{\nu}_{\tau}$	0.11×10^{-4}	$(1.31\pm 0.23)\times 10^{-4}$		1.01×10^{-4}	
$B_s^0 \to K_0^{*+}(800)\mu^-\bar{\nu}_\mu$	1.23×10^{-4}	$(2.06\pm 0.31)\times 10^{-4}$		1.42×10^{-4}	
$B_s^0 \to K_0^{*+}(800)\tau^-\bar{\nu}_{\tau}$	0.25×10^{-4}	$(1.07\pm 0.19)\times 10^{-4}$		$0.88 imes 10^{-4}$	
$B^0_d \to K^{*0}_0(800) \mu^+ \mu^-$	$3.47 imes 10^{-7}$	$(7.31\pm 1.21)\times 10^{-7}$			
$B_d^0 \to K_0^{*0}(800)\tau^+\tau^-$	0.61×10^{-7}	$(1.33\pm0.36)\times10^{-7}$			
$B_s^0 \to f_0(980)\mu^+\mu^-$	2.45×10^{-7}	$(5.14\pm0.78)\times10^{-7}$	0.95×10^{-7}	$5.21 imes 10^{-7}$	
$B_s^0 \to f_0(980)\tau^+\tau^-$	0.42×10^{-7}	$(0.74\pm0.17)\times10^{-7}$	1.1×10^{-7}	0.38×10^{-7}	
$B_d^0 \to K_0^{*0}(800)\bar{\nu}\nu$	2.53×10^{-6}	$(6.30\pm 0.97)\times 10^{-6}$			
$B_s^0 \to f_0(980)\bar{\nu}\nu$	1.79×10^{-6}	$(4.39\pm 0.63)\times 10^{-6}$	0.87×10^{-6}		

[18] P. Colangelo, F. De Fazio, P. Santorelli and E. Scrimieri, Phys. Rev. D 53, 3672 (1996); Phys. Rev. D 57, 3186(E) (1998) [31] R. H. Li, C. D. Lu, W. Wang and X. X. Wang, Phys. Rev. D 79, 014013 (2009) [arXiv:0811.2648 [hep-ph]]. [37] Z. G. Wang, Semi-leptonic $B \rightarrow S$ decays in the standard model and in the universal extra dimension model

s-wave and p-wave contributions in the narrow width-limit

$$\int dm_{K\pi}^2 |L_{K^*}(m_{K\pi}^2)|^2 = \mathcal{B}(K^{*+} \to K^0 \pi^+) = \frac{2}{3} \; .$$

$$\int_{(m_{K^*}-\delta_m)^2}^{(m_{K^*}+\delta_m)^2} dm_{K\pi}^2 |L_S(m_{K\pi}^2)|^2 = 0.17$$

*U.G. Meissner, W. Wang, JHEP 01 (2014) 107

Impact of s wave contribution

$$R(q^2) = \frac{2/3 \, d\Gamma(B \to K^*(892)\mu^+\mu^-)}{2/3 \, d\Gamma(B \to K^*(892)\mu^+\mu^-) + 0.17 d\Gamma(B \to K^*_0(800)\mu^+\mu^-)}$$

* A. Issadykov, Mikhail A. Ivanov, S. Sakhiyev , Phys. Rev. D91 (2015) 074007

$$\mathbf{B}^{0}{}_{S} \rightarrow \boldsymbol{\varphi}\ell^{+}\ell^{-}$$

Examples of $b \to s$ loop diagrams contributing to the decay $B_s^0 \to \phi \mu^+ \mu^-$ in the SM.

The values of branching fractions

fable iv.	Total	branching	fractions.	
-----------	-------	-----------	------------	--

	This work	Ref. [32]	Ref. [33]	Ref. [38]	Ref. [43]	Ref. [3,44]
$10^7 \mathcal{B}(B_s \to \phi \mu^+ \mu^-)$	9.11 ± 1.82	11.1 ± 1.1	19.2	11.8 ± 1.1	16.4	7.97 ± 0.77
$10^7 \mathcal{B}(B_s \to \phi \tau^+ \tau^-)$	1.03 ± 0.20	1.5 ± 0.2	2.34	1.23 ± 0.11	1.51	
$10^5 \mathcal{B}(B_s \to \phi \gamma)$	2.39 ± 0.48	3.8 ± 0.4				3.52 ± 0.34
$10^5 \mathcal{B}(B_s \to \phi \nu \bar{\nu})$	0.84 ± 0.16	0.796 ± 0.080			1.165	< 540
$10^2 \mathcal{B}(B_s \to \phi J/\psi)$	0.16 ± 0.03	0.113 ± 0.016				0.108 ± 0.009

Our

* [32] R. N. Faustov and V. O. Galkin, Eur. Phys. J. C 73, 2593 (2013).

[33] U.O. Yilmaz, Eur. Phys. J. C 58, 555 (2008).

- [38] Y. L. Wu, M. Zhong, and Y. B. Zuo, Int. J. Mod. Phys. A 21, 6125 (2006).
- [43] C. Q. Geng and C. C. Liu, J. Phys. G 29, 1103 (2003).
- [44] K. A. Olive *et al.* (Particle Data Group Collaboration), Chin. Phys. C 38, 090001 (2014).
- [3] R. Aaij *et al.* (LHCb Collaboration), J. High Energy Phys.
 09 (2015) 179.
 *S. Dubnicka et .al. Phys.Rev. D93 (2016), 094022

Exp

The branching ratio

*S. Dubnicka et .al. Phys.Rev. D93 (2016), 094022

Two-loop corrections and cc-resonance contr.

$$H_{\text{eff}} = -\frac{G_F}{\sqrt{2}} \lambda_t \sum_{i=1}^{10} C_i(\mu) Q_i(\mu)$$
Modify C_7^{eff} and C_9^{eff}

Condition:

 $q^2/m_b^2 < < 1$

 $q^2/(4m_c)^2 < < 1$

Areas of correction:

1.1 < q² < 5.5 ГэВ²

8.8 < q² < 22 ГэВ²

*C. Greub, V. Pilipp, C. Schupbach, JHEP 12 (2008) 040

$10^7 \mathcal{B}(B_s \to \phi \mu^+ \mu^-)$	$2 \log$	1 loop	SM [<u>4</u>]	Expt. [<u>3</u>]
[0.1, 2]	0.99 ± 0.1	0.86 ± 0.09	1.81 ± 0.36	1.11 ± 0.16
[2, 5]	0.90 ± 0.09	0.95 ± 0.1	1.88 ± 0.31	0.77 ± 0.14
[5, 8]		1.25 ± 0.13	2.25 ± 0.41	0.96 ± 0.15
[15, 19]	1.89 ± 0.19	1.95 ± 0.20	2.20 ± 0.16	1.62 ± 0.20
$F_L(B_s \to \phi \mu^+ \mu^-)$	2 loop	1 loop	SM [<u>4</u>]	Expt. [<u>3</u>]
$F_L(B_s \to \phi \mu^+ \mu^-)$ [0.1, 2]	$\begin{array}{c} 2 \ \mathrm{loop} \\ 0.37 \pm 0.04 \end{array}$	$\begin{array}{c} 1 \ \mathrm{loop} \\ 0.46 \pm 0.05 \end{array}$	SM [<u>4</u>] 0.46 ± 0.09	Expt. [3] 0.20 ± 0.09
$F_L(B_s \to \phi \mu^+ \mu^-)$ $[0.1, 2]$ $[2, 5]$	2 loop 0.37 ± 0.04 0.72 ± 0.07	1 loop 0.46 ± 0.05 0.74 ± 0.07	SM [<u>4</u>] 0.46 ± 0.09 0.79 ± 0.03	Expt. [3] 0.20 ± 0.09 0.68 ± 0.15
$F_L(B_s \to \phi \mu^+ \mu^-)$ $[0.1, 2]$ $[2, 5]$ $[5, 8]$	2 loop 0.37 ± 0.04 0.72 ± 0.07 	$\begin{array}{c} 1 \ \mathrm{loop} \\ 0.46 \pm 0.05 \\ 0.74 \pm 0.07 \\ 0.57 \pm 0.06 \end{array}$	$\begin{array}{c} {\rm SM} \ \underline{[4]}\\ 0.46 \pm 0.09\\ 0.79 \pm 0.03\\ 0.65 \pm 0.05 \end{array}$	Expt. [3] 0.20 ± 0.09 0.68 ± 0.15 0.54 ± 0.10

*S. Dubnicka et .al. Phys.Rev. D93 (2016), 094022

In the SM, the effective Hamiltonian for the $b \to q\ell^+\ell^-$ decay can be written as

$$\mathcal{H}_{eff}^{SM} = -\frac{4G_F}{\sqrt{2}} V_{tq} V_{tb}^* \left\{ \sum_{i=1}^{10} C_i(\mu) \mathcal{O}_i(\mu) + \lambda_u^* \sum_{i=1}^2 C_i(\mu) [\mathcal{O}_i(\mu) - \mathcal{O}_i^{(u)}(\mu)] \right\},$$
where $\lambda_u^* \equiv \frac{V_{ub}^* V_{uq}}{V_{tb}^* V_{tq}}, \qquad q = s, d$

 $b \rightarrow s$ transition :

 $\lambda_{ts} = V_{tb}^* V_{ts} = 0.041 \qquad \qquad \lambda_{us} = V_{ub}^* V_{us} = 0.00088$

 $b \rightarrow d$ transition :

 $\lambda_{td} = V_{tb}^* V_{td} = 0.00825 \qquad \qquad \lambda_{ud} = V_{ub}^* V_{ud} = 0.00384$

Form factors of b-d transition

Branching ratios

TABLE VI: : Total branching fractions

	$\mathcal{B}(B_s \to K^{*0} \mu^+ \mu^-)$	$\mathcal{B}(B_s \to K^{*0}J/\psi)$	$\frac{\mathcal{B}(B_s \to K^{*0} \mu^+ \mu^-)}{\mathcal{B}(B^0 \to K^{*0} \mu^+ \mu^-)}$	$\frac{\mathcal{B}(B_s \rightarrow K^{*0}J/\psi)}{\mathcal{B}(B_s \rightarrow \phi J/\psi)}$	${\cal B}(B^+\to\rho^+\mu^+\mu^-)$
Expt. [9, 10]	$(2.9 \pm 1)10^{-8}$	$(4.14\pm+0.24)10^{-5}$	$(3.3\pm1.1)*10^{-2}$	$4.05 * 10^{-2}$	
CCQM	$(2.73\pm +0.55)10^{-8}$	$5.71 \pm +1.14) 10^{-5}$	$(2.33\pm0.47)*10^{-2}$	$3.57 * 10^{-2}$	$(3.46 \pm 0.69)10^{-8}$
[11]	$(2.89\pm 0.73)10^{-8}$				$(4.16 \pm 0.68)10^{-8}$
[6]					$(4.33 \pm 1.14) 10^{-8}$

[6] J. J. Wang, R. M. Wang, Y. G. Xu and Y. D. Yang, Phys. Rev. D 77 (2008) 014017

doi:10.1103/PhysRevD.77.014017 [arXiv:0711.0321 [hep-ph]].

- [9] R. Aaij et al. [LHCb Collaboration], arXiv:1804.07167 [hep-ex].
- [10] R. Aaij et al. [LHCb Collaboration], JHEP 1511 (2015) 082 doi:10.1007/JHEP11(2015)082
- [11] B. Kindra and N. Mahajan, arXiv:1803.05876 [hep-ph].

Binned branching ratios

	$B_s \to K$	$\Lambda^{*0}\mu^+\mu^-$	$B^+ \to \rho$	$p^+\mu^+\mu^-$
$10^8 * \mathcal{B}$	2 loop	1 loop	2 loop	1 loop
[0.1, 1]	0.17 ± 0.03	0.14 ± 0.03	0.23 ± 0.04	0.19 ± 0.04
[2, 5]	0.24 ± 0.05	0.25 ± 0.05	0.34 ± 0.06	0.36 ± 0.07
[5, 8]		0.34 ± 0.07		0.45 ± 0.09
[11, 13]	0.31 ± 0.06	0.33 ± 0.06	0.38 ± 0.04	0.40 ± 0.08
[15, 17]	0.35 ± 0.07	0.37 ± 0.07	0.41 ± 0.08	0.42 ± 0.08
[17, 20]	0.40 ± 0.08	0.41 ± 0.08	0.48 ± 0.10	0.49 ± 0.10
[1, 6]	0.41 ± 0.08	0.43 ± 0.08	0.58 ± 0.11	0.61 ± 0.12
[15, 20]	0.75 ± 0.15	0.78 ± 0.16	0.89 ± 0.18	0.92 ± 0.18

Binned angular observables

	$B_s \to F$	$K^{*0}\mu^{+}\mu^{-}$	$B^+ \rightarrow \mu$	$p^+\mu^+\mu^-$
A_{FB}	2 loop	1 loop	2 loop	1 loop
[0.1, 1]	0.11 ± 0.01	0.12 ± 0.01	0.11 ± 0.01	0.11 ± 0.01
[2, 5]	0.036 ± 0.004	-0.034 ± 0.003	0.036 ± 0.004	-0.027 ± 0.003
[5, 8]		-0.249 ± 0.025		-0.227 ± 0.023
[11, 13]	-0.38 ± 0.04	-0.40 ± 0.04	-0.37 ± 0.04	-0.38 ± 0.04
[15, 17]	-0.39 ± 0.04	-0.40 ± 0.04	-0.39 ± 0.04	-0.39 ± 0.04
[17, 20]	-0.31 ± 0.03	-0.31 ± 0.03	-0.32 ± 0.03	-0.33 ± 0.03
[1, 6]	0.034 ± 0.003	-0.035 ± 0.004	0.035 ± 0.004	-0.027 ± 0.003
[15, 20]	-0.35 ± 0.04	-0.35 ± 0.04	-0.35 ± 0.04	-0.36 ± 0.04
	$B_s \to F$	$K^{*0}\mu^{+}\mu^{-}$	$B^+ \to \mu$	$p^+\mu^+\mu^-$
F_L	$2 \log$	1 loop	$2 \log$	1 loop
[0.1, 1]	0.23 ± 0.02	0.30 ± 0.03	0.25 ± 0.03	0.32 ± 0.03
[2, 5]	0.72 ± 0.07	0.74 ± 0.07	0.75 ± 0.08	0.77 ± 0.08
[5, 8]		0.57 ± 0.06		0.61 ± 0.06
[11, 13]	0.40 ± 0.04	0.39 ± 0.04	0.42 ± 0.04	0.42 ± 0.04
[15, 17]	0.34 ± 0.03	0.33 ± 0.03	0.35 ± 0.04	0.35 ± 0.04

Conclusion

We have found that the theoretical predictions for the ratio $\mathcal{R}_{J/\psi}$ are more than 2σ less than the experimental data. This may indicate on the possibility of New physics effects in this decay.

At the same time the ratios of the branching fractions $\mathcal{R}_{\pi^+/\mu^+\nu}$ and $\mathcal{R}_{\mathcal{K}^+/\pi^+}$ are in good agreement with the LHCb data and other theoretical approaches.

Since our result for $\mathcal{R}_{J/\psi}$ is different from the data at the level of 2 σ , we can urge to more precise measurement of the $B_c \to J/\psi \, \ell \bar{\nu}_\ell$ channel which currently has quite large uncertainties. This might be very important since it may imply that the new physics (if there is any) has strong couplings to the leptons but not hadrons.

```
Phys.Lett. B783 (2018) 178-182 (arXiv:1804.00472)
```

Phys.Rev. D96 (2017) no.7, 076017 (arXiv:1708.09607)

EPJ Web Conf. 158 (2017) 03002

•

•

Thank you for your attention

Backup slides

 R_{K^*}

FIG. 6: Definition of the angles θ , θ^* and χ in the cascade decay $B \to K^*(\to K\pi)\bar{\ell}\ell$.

$$\frac{d\Gamma}{dq^2} = \int d\cos\theta \, d\cos\theta^* d\chi \, \frac{d^4\Gamma}{dq^2 \, d\cos\theta^* \, d\cos\theta \, d\chi} = \frac{1}{4} \left(3J_{1c} + 6J_{1s} - J_{2c} - 2J_{2s} \right)$$
$$= \frac{G_F^2}{(2\pi)^3} \left(\frac{\alpha |\lambda_t|}{2\pi} \right)^2 \frac{|\mathbf{p}_2| \, q^2 \, \beta_\ell}{12 \, m_1^2} \mathcal{H}_{\text{tot}}, \qquad \frac{d\mathcal{B}}{dq^2} = \frac{1}{\Gamma_B} \frac{d\Gamma}{dq^2},$$
$$A_{\text{FB}} = \frac{1}{d\Gamma/dq^2} \left[\int_0^1 - \int_{-1}^0 \right] d\cos\theta \, \frac{d^2\Gamma}{dq^2 d\cos\theta} = -\frac{3}{4} \frac{J_{6s}}{d\Gamma/dq^2} = -\frac{3}{4} \beta_\ell \frac{\mathcal{H}_P^{12}}{\mathcal{H}_{\text{tot}}},$$

$$F_L = -\frac{J_{2c}}{d\Gamma/dq^2} = \frac{1}{2}\beta_\ell^2 \frac{\mathcal{H}_L^{11} + \mathcal{H}_L^{22}}{\mathcal{H}_{\text{tot}}}.$$

$$\begin{split} J_{1s} &= \frac{(2+\beta_{\ell}^2)}{4} \left[|A_{\perp}^L|^2 + |A_{\parallel}^R|^2 + |A_{\parallel}^R|^2 + |A_{\parallel}^R|^2 \right] + \frac{4m_{\ell}^2}{q^2} \operatorname{Re} \left(A_{\perp}^L A_{\perp}^{R*} + A_{\parallel}^L A_{\parallel}^{R*} \right) , \\ J_{1c} &= |A_0^L|^2 + |A_0^R|^2 + \frac{4m_{\ell}^2}{q^2} \left[|A_t|^2 + 2\operatorname{Re}(A_0^L A_0^{R*}) \right] + \beta_{\ell}^2 |A_S|^2 , \\ J_{2s} &= \frac{\beta_{\ell}^2}{4} \left[|A_{\perp}^L|^2 + |A_{\parallel}^R|^2 + |A_{\perp}^R|^2 + |A_{\parallel}^R|^2 \right] , \qquad J_{2c} = -\beta_{\ell}^2 \left[|A_0^L|^2 + |A_0^R|^2 \right] , \\ J_3 &= \frac{1}{2} \beta_{\ell}^2 \left[|A_{\perp}^L|^2 - |A_{\parallel}^R|^2 + |A_{\perp}^R|^2 - |A_{\parallel}^R|^2 \right] , \qquad J_4 = \frac{1}{\sqrt{2}} \beta_{\ell}^2 \left[\operatorname{Re}(A_0^L A_{\parallel}^{L*} + A_0^R A_{\parallel}^{R*}) \right] \\ J_5 &= \sqrt{2} \beta_{\ell} \left[\operatorname{Re}(A_0^L A_{\perp}^{L*} - A_0^R A_{\perp}^{R*}) - \frac{m_{\ell}}{\sqrt{q^2}} \operatorname{Re}(A_{\parallel}^L A_{S}^* + A_{\parallel}^R A_{S}) \right] , \\ J_{6s} &= 2\beta_{\ell} \left[\operatorname{Re}(A_{\parallel}^L A_{\perp}^{L*} - A_{\parallel}^R A_{\perp}^{R*}) \right] , \qquad J_{6c} = 4\beta_{\ell} \frac{m_{\ell}}{\sqrt{q^2}} \operatorname{Re}(A_0^L A_{S}^* + A_0^R^* A_{S}) + \frac{m_{\ell}}{\sqrt{q^2}} \operatorname{Im}(A_{\perp}^L A_{S}^* - A_{\perp}^R A_{S})) \right] , \\ J_8 &= \frac{1}{\sqrt{2}} \beta_{\ell}^2 \left[\operatorname{Im}(A_0^L A_{\perp}^{L*} + A_0^R A_{\perp}^{R*}) \right] , \qquad J_9 = \beta_{\ell}^2 \left[\operatorname{Im}(A_{\parallel}^{L*} A_{\perp}^L + A_{\parallel}^{R*} A_{\perp}^R) \right] . \end{split}$$

$$\begin{split} A_{\perp}^{L,R} &= N \frac{1}{\sqrt{2}} \left[(H_{+1+1}^{(1)} - H_{-1-1}^{(1)}) \mp (H_{+1+1}^{(2)} - H_{-1-1}^{(2)}) \right] ,\\ A_{\parallel}^{L,R} &= N \frac{1}{\sqrt{2}} \left[(H_{+1+1}^{(1)} + H_{-1-1}^{(1)}) \mp (H_{+1+1}^{(2)} + H_{-1-1}^{(2)}) \right] ,\\ A_{0}^{L,R} &= N \left(H_{00}^{(1)} \mp H_{00}^{(2)} \right) ,\\ A_{t} &= -2 N H_{0t}^{(2)} , \end{split}$$

where the overall factor is given by

$$N = \left[\frac{1}{4} \frac{G_F^2}{(2\pi)^3} \left(\frac{\alpha |\lambda_t|}{2\pi}\right)^2 \frac{|\mathbf{p_2}| q^2 \beta_\ell}{12m_1^2}\right]^{\frac{1}{2}}.$$

$$\begin{split} H_{t0}^{i} &= \epsilon^{\dagger \mu}(t) \epsilon_{2}^{\dagger \alpha}(0) T_{\mu \alpha}^{i} = \frac{1}{m_{1} + m_{2}} \frac{m_{1} \left| \mathbf{p}_{2} \right|}{m_{2} \sqrt{q^{2}}} \left(Pq \left(-A_{0}^{i} + A_{+}^{i} \right) + q^{2} A_{-}^{i} \right), \\ H_{\pm 1 \pm 1}^{i} &= \epsilon^{\dagger \mu}(\pm) \epsilon_{2}^{\dagger \alpha}(\pm) T_{\mu \alpha}^{i} = \frac{1}{m_{1} + m_{2}} \left(-Pq A_{0}^{i} \pm 2 m_{1} \left| \mathbf{p}_{2} \right| V^{i} \right), \\ H_{00}^{i} &= \epsilon^{\dagger \mu}(0) \epsilon_{2}^{\dagger \alpha}(0) T_{\mu \alpha}^{i} = \\ &= \frac{1}{m_{1} + m_{2}} \frac{1}{2 m_{2} \sqrt{q^{2}}} \left(-Pq \left(m_{1}^{2} - m_{2}^{2} - q^{2} \right) A_{0}^{i} + 4 m_{1}^{2} \left| \mathbf{p}_{2} \right|^{2} A_{+}^{i} \right). \end{split}$$

$$\begin{split} \langle P_1 \rangle_{\rm bin} &= \frac{1}{2} \frac{\int_{\rm bin} dq^2 J_3}{\int_{\rm bin} dq^2 J_{2s}} = -2 \frac{\int_{\rm bin} dq^2 \beta_\ell^2 f(q^2) [\mathcal{H}_T^{11} + \mathcal{H}_T^{22}]}{\int_{\rm bin} dq^2 \beta_\ell^2 f(q^2) [\mathcal{H}_U^{11} + \mathcal{H}_U^{22}]}, \\ \langle P_2 \rangle_{\rm bin} &= \frac{1}{8} \frac{\int_{\rm bin} dq^2 J_{6s}}{\int_{\rm bin} dq^2 J_{2s}} = -\frac{\int_{\rm bin} dq^2 \beta_\ell f(q^2) \mathcal{H}_P^{12}}{\int_{\rm bin} dq^2 \beta_\ell^2 [\mathcal{H}_U^{11} + \mathcal{H}_U^{22}]}, \\ \langle P_3 \rangle_{\rm bin} &= -\frac{1}{4} \frac{\int_{\rm bin} dq^2 J_9}{\int_{\rm bin} dq^2 J_{2s}} = -\frac{\int_{\rm bin} dq^2 \beta_\ell^2 f(q^2) [\mathcal{H}_U^{11} + \mathcal{H}_U^{22}]}{\int_{\rm bin} dq^2 \beta_\ell^2 f(q^2) [\mathcal{H}_U^{11} + \mathcal{H}_U^{22}]}, \\ \langle P_4 \rangle_{\rm bin} &= \frac{1}{\mathcal{N}_{\rm bin}} \int_{\rm bin} dq^2 J_4 = 2 \frac{\int_{\rm bin} dq^2 \beta_\ell^2 f(q^2) [\mathcal{H}_U^{11} + \mathcal{H}_U^{22}]}{N_{\rm bin}}, \\ \langle P_5 \rangle_{\rm bin} &= \frac{1}{2\mathcal{N}_{\rm bin}} \int_{\rm bin} dq^2 J_5 = -2 \frac{\int_{\rm bin} dq^2 \beta_\ell f(q^2) [\mathcal{H}_U^{11} + \mathcal{H}_Z^{21}]}{N_{\rm bin}}, \end{split}$$

$$\langle P_6' \rangle_{\rm bin} = \frac{-1}{2\mathcal{N}_{\rm bin}} \int_{\rm bin} dq^2 J_7 = -2 \frac{\int_{\rm bin} dq^2 \,\beta_\ell \, f(q^2) [\mathcal{H}_{II}^{12} + \mathcal{H}_{II}^{21}]}{N_{\rm bin}},$$

$$\langle P_8' \rangle_{\rm bin} = \frac{-1}{\mathcal{N}_{\rm bin}} \int_{\rm bin} dq^2 J_8 = +2 \frac{\int_{\rm bin} dq^2 \,\beta_\ell^2 \, f(q^2) [\mathcal{H}_{IA}^{11} + \mathcal{H}_{IA}^{22}]}{N_{\rm bin}},$$

where the normalization $\mathcal{N}_{\rm bin}$ is defined as

$$\mathcal{N}_{\rm bin} = \sqrt{-\int_{\rm bin} dq^2 [J_{2s}] \cdot \int_{\rm bin} dq^2 [J_{2c}]}$$
$$= \sqrt{\int_{\rm bin} dq^2 \,\beta_\ell^2 \, f(q^2) [\mathcal{H}_U^{11} + \mathcal{H}_U^{22}] \cdot \int_{\rm bin} \, dq^2 \,\beta_\ell^2 \, f(q^2) [\mathcal{H}_L^{11} + \mathcal{H}_L^{22}]}.$$

TABLE III: Definition of helicity structure functions and	their parity	properties.
---	--------------	-------------

parity-conserving (p.c.)	parity-violating (p.v.)
$\mathcal{H}_U^{ij} = \operatorname{Re}\left(H_{+1+1}^i H_{+1+1}^{\dagger j}\right) + \operatorname{Re}\left(H_{-1-1}^i H_{-1-1}^{\dagger j}\right)$	$\mathcal{H}_P^{ij} = \operatorname{Re}\left(H_{+1+1}^i H_{+1+1}^{\dagger j}\right) - \operatorname{Re}\left(H_{-1-1}^i H_{-1-1}^{\dagger j}\right)$
$\mathcal{H}_{IU}^{ij} = \operatorname{Im}\left(H_{+1+1}^{i}H_{+1+1}^{\dagger j}\right) + \operatorname{Im}\left(H_{-1-1}^{i}H_{-1-1}^{\dagger j}\right)$	$\mathcal{H}_{IP}^{ij} = \operatorname{Im}\left(H_{+1+1}^{i}H_{+1+1}^{\dagger j}\right) - \operatorname{Im}\left(H_{-1-1}^{i}H_{-1-1}^{\dagger j}\right)$
$\mathcal{H}_{L}^{ij} = \operatorname{Re}\left(H_{00}^{i}H_{00}^{\daggerj} ight)$	$\mathcal{H}_A^{ij} = \frac{1}{2} \left[\operatorname{Re} \left(H_{+1+1}^i H_{00}^{\dagger j} \right) - \operatorname{Re} \left(H_{-1-1}^i H_{00}^{\dagger j} \right) \right]$
$\mathcal{H}_{IL}^{ij} = \operatorname{Im}\left(H_{00}^{i}H_{00}^{\dagger j} ight)$	$\mathcal{H}_{IA}^{ij} = \frac{1}{2} \left[\operatorname{Im} \left(H_{+1+1}^i H_{00}^{\dagger j} \right) - \operatorname{Im} \left(H_{-1-1}^i H_{00}^{\dagger j} \right) \right]$
$\mathcal{H}_T^{ij} = \operatorname{Re}\left(H_{+1+1}^i H_{-1-1}^{\dagger j}\right)$	$\mathcal{H}_{SA}^{ij} = \frac{1}{2} \left[\operatorname{Re} \left(H_{+1+1}^{i} H_{0t}^{\dagger j} \right) - \operatorname{Re} \left(H_{-1-1}^{i} H_{0t}^{\dagger j} \right) \right]$
$\mathcal{H}_{IT}^{ij} = \operatorname{Im}\left(H_{+1+1}^{i}H_{-1-1}^{\dagger j}\right)$	$\mathcal{H}_{ISA}^{ij} = \frac{1}{2} \left[\operatorname{Im} \left(H_{+1+1}^i H_{0t}^{\dagger j} \right) - \operatorname{Im} \left(H_{-1-1}^i H_{0t}^{\dagger j} \right) \right]$
$\mathcal{H}_{I}^{ij} = \frac{1}{2} \left[\operatorname{Re} \left(H_{+1+1}^{i} H_{00}^{\dagger j} \right) + \operatorname{Re} \left(H_{-1-1}^{i} H_{00}^{\dagger j} \right) \right]$	
$\mathcal{H}_{II}^{ij} = \frac{1}{2} \left[\operatorname{Im} \left(H_{+1+1}^{i} H_{00}^{\dagger j} \right) + \operatorname{Im} \left(H_{-1-1}^{i} H_{00}^{\dagger j} \right) \right]$	
$\mathcal{H}_{S}^{ij} = \operatorname{Re}\left(H_{0t}^{i}H_{0t}^{\dagger j}\right)$	
$\mathcal{H}_{IS}^{ij} = \operatorname{Im}\left(H_{0t}^{i}H_{0t}^{\dagger j} ight)$	
$\mathcal{H}_{ST}^{ij} = \frac{1}{2} \left[\operatorname{Re} \left(H_{+1+1}^i H_{0t}^{\dagger j} \right) + \operatorname{Re} \left(H_{-1-1}^i H_{0t}^{\dagger j} \right) \right]$	
$\mathcal{H}_{IST}^{ij} = \frac{1}{2} \left[\operatorname{Im} \left(H_{+1+1}^{i} H_{0t}^{\dagger j} \right) + \operatorname{Im} \left(H_{-1-1}^{i} H_{0t}^{\dagger j} \right) \right]$	
$\mathcal{H}_{SL}^{ij} = \operatorname{Re}\left(H_{00}^{i}H_{0t}^{\daggerj}\right)$	
$\mathcal{H}_{ISL}^{ij} = \operatorname{Im}\left(H_{00}^{i}H_{0t}^{\daggerj} ight)$	