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PART I AND II

¨ History

¨ Worldline formalism for Scalar QED (one-loop)

¨ Worldline formalism for Spinor QED (one-loop)

¨ Constant field background (one-loop)

¨ Worldline formalism for Scalar propagator

¨ Constant field background for Scalar propagator
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PART III

1PR contribution to the electron propagator in background fields
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HISTORY

¨ In 1948, Feynman developed the path integral approach to
nonrelativistic quantum mechanics (based on earlier work by Wentzel
and Dirac)

¨ Two years later, he started his famous series of papers that laid the
foundations of relativistic quantum field theory (essentially quantum
electrodynamics at the time) and introduced Feynman diagrams.

¨ However, at the same time he also developed a representation of the
QED S-matrix in terms of relativistic particle path integrals. It appears
that he considered this approach less promising.
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¨ So no essential use was made of those path integral representations
for many years after, excepting the work by Affleck et. al (1982)
where they studied pair production in external fields.

¨ The potential of this particle path integral or worldline formalism to
improve on standard field theory methods, at least for certain types of
computations, was recognized only in the early nineties through the
work of Bern and Kosower (1992) and later Strassler (1992).

¨ Since then many amplitude calculations has been done (in tree-level
as well as loop orders) in QED and QCD (recently in curved space)
which we will briefly discuss them here.
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FREE SCALAR PROPAGATOR

Let’s start with the scalar propagator which is the Green’s function for the
Klein-Gordon operator equation

Dxx
′

0 ≡ 〈0|Tffi(x)ffi(x ′)|0〉 = 〈x | 1

−˜ +m2
|x ′〉 (1)

We work in Euclidean convention defined by the following changes due to the
Wick rotation from Minkowski space with metric (−+ ++)

E = k0 = −k0 → ik4 ; t = x0 = −x0 → ix4 (2)

Thus (and we set ~ = c = 1)

˜ =

4X
i=1

@2

@x2
i

If we use the Schwinger proper time to exponentiate the denominator of the
propagator

Dxx
′

0 = 〈x |
∞Z

0

dTe−T (−˜+m2)|x ′〉 =

∞Z
0

dTe−m
2T 〈x |eT ˜|x ′〉 (3)
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Now let’s compare with the definition of the free propagator:

〈x ′; 0|x; t〉 = 〈x; 0|e−itH|x; t〉 =

x(t)=xZ
x(0)=x ′

Dx(t)e
i
R t

0
dfi m

2
ẋ2

(4)

where H = − 1
2m
∇2. Using this action and applying the following replacement

∇2 → ˜ ; m→ 1

2
; fi → −ifi ; t → −iT

we get

Dxx
′

0 =

∞Z
0

dTe−m
2T

x(T )=xZ
x(0)=x ′

Dxe
−
R T

0
dfi 1

4
ẋ2

(5)

This is the worldline representation of the relativistic scalar propagator in
euclidean space from x ′ to x . The parameter T for us will just be an integration
variable, but it has a deeper mathematical meaning related to one-dimensional
reparametrization invariance.
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Now again if we change the variables to

x— = x—cl (fi) + q—(fi) =
h
x— +

fi

T
(x— − x ′—)

i
+ q—(fi)

ẋ— =
x— − x ′—

T
+ q̇—(fi) (6)

Plugging back to the propagator we obtain

Dxx
′

0 =

∞Z
0

dTe−Tm
2

e−
(x−x′)2

4T

Z
q(0)=q(T )=0

Dq(fi) e
− 1

4

R T
0
dfiq̇2

(7)

We recall from our previous discussion that the normalization factor which in D

dimensions was
“

m
2iıt

”D=2

with the above substitution is given now asZ
q(0)=q(T )=0

Dq(fi) e
− 1

4

R T
0
dfiq̇2

=
“

4ıT
”−D=2

(8)
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therefore

Dxx
′

0 =

∞Z
0

dT
“

4ıT
”−D=2

e−Tm
2

e−
(x−x′)2

4T (9)

which is the x-space represenaion of the free scalar propagator. If we Fourier
transform it we get the familiar expression

Dpp
′

0 =

Z
dDx

Z
dDx ′ e ipxe ip

′x ′Dxx
′

0

=

∞Z
0

dT
“

4ıT
”−D=2

e−Tm
2

Z
dDx

Z
dDx ′ e ipx+ip′x ′e−

(x−x′)2

4T (10)

Changing the integration variables from x and x ′ to

x − x ′ = x− ; x + x ′ = 2x+

finally leads to

Dpp
′

0 = (2ı)D‹(p + p′)
1

p2 +m2
(11)

Page 8 Member of the Helmholtz Association

Ahmadiniaz | Theoretical Physics | www.hzdr.de



One-loop correction in scalar and spinor
QED in vacuum and in constant

background fields
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COUPLING TO THE ELECTROMAGNETIC FIELD

Now we consider coupling with an external vector field A—, the worldline action
becomes

S[x; A] =

TZ
0

dfi
“

1

4
ẋ2 + ieẋ · A(x)

”
(12)

which is what we expect from Maxwell theory. The full scalar propagator that
interacts with the background field A—(x) reads as

Dxx
′
[A] =

∞Z
0

dTe−Tm
2

Z
DBC

Dx(fi) e
−
R T

0
dfi

`
1
4
ẋ2+ieẋ·A(x)

´
(13)

Page 10 Member of the Helmholtz Association

Ahmadiniaz | Theoretical Physics | www.hzdr.de



For the one-loop case, we already introduced the effective action in the
background field which takes into account the one-loop correction, namely

Γ[A] =

∞Z
0

dT

T
e−m

2T

Z
PBC

Dx(fi) e
−
R T

0
dfi

`
ẋ2

4
+ieẋ·A(x(fi))

´
(14)

One-loop correction→ virtual particles

The effective action contains the quantum effects caused by the presence of
such particles in the vacuum for the background field. In particular, it causes
electrodynamics to become a nonlinear theory at the one-loop level, where
photons can interact with each other in an indirect fashion.
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GAUSSIAN INTEGRALS

Techniques for efficient calculation of these path integrals developed much later
than their first discovery by Feynman in 1950. Presently there are three different
methods available, namely
¨ The analytic or string-inspired approach, based on the use of

worldline Green’s functions.

¨ The semi-classical approximation, based on a stationary trajectory
(worldline instanton).

¨ Direct numerical computation of the path integral (Worldline Monte
Carlo)

Here we follow the first approach and we introduce Green’s functions.
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In the string-inspired approach all path integrals are brought into gaussian
form. They are then calculated by a formal extension of the n-dimensional
gaussian integration formulas to infinite dimensions.

As a reminder in n-dimensionsZ
dnx e−

1
4
x·M·x =

(4ı)
n
2

(detM)
1
2R

dnx e−
1
4
x·M·x+J:xR

dnx e−
1
4
x·M·x

= e j:M
−1:j (15)

M is assumed to be n × n symmetric and positive definite. Also, by multiple
differentiation of the second formula with respect to the components of the
vector j one getsR

dnx (xixj) e
− 1

4
x·M·x+J:xR

dnx e−
1
4
x·M·x

= 2M−1
i jR

dnx (xi xj xk xl) e
− 1

4
x·M·x+J:xR

dnx e−
1
4
x·M·x

= 4
“
M−1
i j M

−1
kl +M−1

ik M
−1
j l +M−1

i l M
−1
jk

”
...

...
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N-PHOTON AMPLITUDE, ONE-LOOP

Now we derive a master formula for the one-loop correction to the scalar QED.
To obtain such N-photon amplitude we consider a scalar particle, while moving
along the closed trajectory in spacetime, absorbs or emits a fixed number of N of
quanta of the background field, that is photons of fixed momentum k and
polarization ". In field theory to do this we specialze the background field which
so far was arbitrary, specialze to plane wave background

A—(x) =

NX
i=

"—i e
iki ·x(fi) (16)

Then if we expand the interaction part of the amplitude to AN order we get

(−ie)N

N!

“ TZ
0

dfi

NX
i=1

"i · ẋ(fii )e
iki ·x(fii )

”
(17)
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In total there are NN terms from which only N! are totally mixed terms with N
different polarization and momenta, therefore the 1=N! cancels out and we have

(−ie)N
TZ

0

dfi1"1 · ẋ(fi1) · · ·
TZ

0

dfi1"N · ẋ(fiN) (18)

which can be written compactly as

(−ie)NV ‚scal[k1; "1] · · · V ‚scal[kN ; "N ] (19)

where

V ‚scal[k; "] =

TZ
0

dfi" · ẋ(fi)e ik·x(fi)

is known as the photon vertex operator. This is the same vertex operator which
is used in (open) string theory to describe the emission or absorption of a
photon by a string.
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Therefore the N-photon amplitude can be written as

Γ[k1; "1; · · · kN ; "N ] = (−ie)N
∞Z

0

dT

T
e−m

2T

Z
PBC

Dx(fi) e
− 1

4

R T
0
dfiẋ2

V ‚ [k1; "1] · · · V ‚ [kN ; "N ]

Note that each vertex operator represents the emission or absorption of a single
photon, however the moment when this happens is arbitrary and must therefore
be integrated over.

Doing it for arbitrary N the way it stands would still be difficult, though, due to the
factors of ẋ ’s, but let’s use the following trick to rewrite the vertex operator

V ‚ [ki ; "i ] =

TZ
0

dfii" · ẋi e iki ·xi ≡
TZ

0

dfii e
iki ·xi+"i ·ẋi

˛̨̨
line in "

(20)
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We can write the kinetic term as (Exercise 1)

TZ
0

dfiẋ2 =

TZ
0

dfix
“
− d2

dfi 2

”
x (21)

We first decompose the coordinate to the zero-mode part (x0) and the relative
coordinate q

x—(fi) = x—0 + q—(fi)→
Z
Dx(fi) =

Z
dDx0

Z
Dq(fi) (22)

where the zero-mode corresponds to the path integral over closed trajectories
includes the constant loops x(fi) = constant where the kinetic term is zero which
in the Gaussian integral it corresponds to a zero eigenvalue of the matrix M. To
solve it, we define the loop centre-of-mass (or average position) by

x0 =
1

T

TZ
0

dfix—(fi)→
TZ

0

dfiq— = 0
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This zero-mode integral eventually after reexponentiating the vertex operators
leads to Z

dDx0 e

PN

i=1
ki ·x0 = (2ı)D‹D

“ NX
i=1

ki

”
(23)

This is just the expected global delta function for energy-momentum
conservation.

Now we need to use the D-dimensional Gaussian integral formulas to find

detM = (4T )D

In the reduced Hilbert space without the zero mode, the kinetic operator is
invertible, and the inverse is easily found using the eigenfunctions of the
derivative operator on the circle with circumference T {e2ıin fi

T ; n ∈ Z=0}

GB(fi; fi ′) = 2〈fi |( d
dfi

)−2|fi ′〉 = 2T

∞X
n=−∞;n 6=0

e2ıin fi−fi
′

T

(2ıin)2

= |fi − fi ′| − (fi − fi ′)2

T
− T

6
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Note that
¨ GB(fi; fi ′) is a function of fi − fi ′ → it is translational invariance.
¨ the subscript B stands for Bosonic Green’s function
¨ in flat space calculations −T=6 is irrelevant and can be omitted so
GB(fi; fi ′)→ |fi − fi ′| − (fi−fi ′)2

T

We will later on need its first and second derivative which are

ĠB = @fiGB = sign(fi − fi ′)− 2(fi − fi ′)
T

G̈B = @2
fiGB = 2‹(fi − fi ′)− 2

T
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Now, to use the Gaussian integral formula we have already introduced we need
to define

j(fi) =

NX
i=1

“
i‹(fi − fi ′)ki − ‹̇(fi − fi ′)"i

”
(24)

Now we can rewrite the exponent of the vertex operator

e

PN

i=1
(iki ·qi+"i ·q̇i ) = e

R T
0
dfij(fi)·q(fi) (25)

where we used
TZ

0

dfi‹̇(fi − fi ′)q(fi) = −q̇(fi ′)

therefore

Dq(fi)e
−
R T

0

1
4
q̇2

e

PN

i=1 (iki · q + "i · q̇i )

Dq(fi)e
−
R T

0

1
4
q̇2

= exp
n
− 1

2

TZ
0

dfi

TZ
0

dfi ′GB(fi; fi ′) j(fi) · j(fi ′)
o

= exp
n NX
i ;j=1

h
1

2
GBijki · kj − i ĠBij"i · kj +

1

2
G̈Bij"i · "j

io
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One can already see that −T=6 which we have omitted has no effect since it
only appears in the first term and it goes away by momentum conservation.

Finally, we need also the absolute normalization of the free path integral, which
turns out to be the same as in the DBC caseZ

Dq(fi) e
−
R T

0
dfi 1

4
q̇2

=
“

4ıT
”−D

2
(26)

Putting things together, we get the famous Bern-Kosower master formula

Γscal[k1; "1; · · · ; kN ; "N ] = (−ie)N(2ı)D‹D(
X
i

ki )

TZ
0

dT

T
e−m

2T

NY
i=1

TZ
0

dfii

×exp
n NX
i ;j=1

h
1

2
GBijki · kj − i ĠBij"i · kj +

1

2
G̈Bij"i · "j

io˛̨̨̨
lin "1"2···"N

(27)
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The master formula simply gives a sum over all possible diagrams in
each order:
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¨ This formula (or rather its analogue for the QCD case) was first
derived by Bern and Kosower from string theory (PRL 66 (1991)
1669, NPB 379 (1992) 45).

¨ It re-derived in the present approach by Strassler (NPB 385 (1992)).

¨ As it stands, it represents the one-loop N-photon amplitude in scalar
QED.

¨ Bern and Kosower also derived a set of rules which allows one to
construct, starting from this master formula and by purely algebraic
means, parameter integral representations for the N-photon
amplitudes with a fermion loop, as well as for the N-gluon amplitudes
involving a scalar, spinor or gluon loop.
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THE VACUUM POLARIZATION

In this part of our lecture let’s use our master formula and compute the vacuum
polariation diagram which is obtained by setting N = 2

Γ2
scal[k1; "1; k2; "2] = (−ie)2(2ı)4‹D(k1 + k2)

∞Z
0

dT

T
(4ıT )−D=2e−m

2T

×
TZ

0

dfi1dfi2P2 e
GB12k1·k2 (28)

where
P2 = ĠB12"1 · k2 ĠB21"2 · k1 − G̈B12"1 · "2

We could perform the parameter integrals straight away, but let’s add some total
derivative (which vanishes by the boundary conditions) and remove the G̈B12

term, if we add

P2 +
@

@fi1
(ĠB12"1 · "2 e

GB12k1·k2 ) = Q2 (29)
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in which

Q2 = ĠB12ĠB21

“
"1 · k2"2 · k1 − "1 · "2k1 · k2

”
=

1

2
tr(f1f2)eGB12k1·k2 (30)

where

f—� = k—"� − k�"— → tr(f1f2) = f1—� f
�—

2 = 2("1 · k2"2 · k1 − "1 · "2k1 · k2)

Now if we use momentum conservation to set k1 = −k2 = k and define

Γscal[k1; "1; k2; "2] = (2ı)D‹D(k1 + k2) "1 · Πscal · "2 (31)

where

Π
—�
scal = e2(‹—�k2 − k—k�)

∞Z
0

dT

T
(4ıT )−D=2e−m

2T

TZ
0

dfi1dfi2ĠB12ĠB21 e
−GB12k

2

Note that the OBP has had the effect to factor out the usual transversal projector
‹—�k2 − k—k� already at the integrand level.
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Now if fii = Tui and use the translational invariance to set u2 = 0 and u1 = u
then we need

GB12 = Tu(1− u) ; ĠB12 = 1− 2u (32)

therefore

Π
—�
scal =

e2

(4ı)D=2
(‹—�k2 − k—k�)

∞Z
0

dTT 2−D=2e−m
2T

1Z
0

du(1− 2u)2 e−Tu(1−u)k2

Now using
∞Z

0

dx

x
x– e−ax = Γ[–]a−– ; a > 0

we obtain

Π
—�
scal =

e2

(4ı)D=2
(‹—�k2 − k—k�)Γ[2−D=2]

1Z
0

du(1− 2u)2
h
m2 + u(1− u)k2

i2−D=2

which needs to be renormalized, but we do not proceed further.
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Our result agrees, of course, with a computation of the two corresponding
Feynman diagrams:

Alternatively, it should be mentioned that the same result can be obtained by
using the Gaussian integrals we have mentioned before and using the following
set of Wick contractions:
¨ The basic Wick contraction of two fields is

〈q—1 q�2 〉 = −GB12‹
—�

¨ For instance the contraction of four different fields

〈q—1 q�2 q

3 q

ff
4 〉 = GB12GB34‹

—�‹ff + 2 perm
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¨ Contract fields with exponentials according to

q—1 e
ik2·q2 = i〈q—1 q�2 〉k2�e

ik2·q2

¨ Once all elementary fields have been contracted the contraction of
the remaining exponentials yields to the following universal factor

〈e ik1·q1 e ik2·q2 · · · e ikN ·qN 〉 = exp
h
− 1

2

NX
i ;j=1

〈q—i q
�
j 〉ki—kj�

i

= exp
h1

2

NX
i ;j=1

GBijki · kj
i

Exercise: Compute the vacuum polarization diagrams by expanding the
interaction term in the path integral and using the above Wick contractions.
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SPINOR QED

Feynman (1950-51) presented the following generalization of the effective action
for the spinor case:

Γspin[A] = −1

2

∞Z
0

dT

T
e−m

2T

Z
PBC

Dx(fi) e
−
R T

0
dfi

“
1
4
ẋ2+ieẋ·A(x)

”
Spin[x(fi; )A]

where the Spin factor

Spin[x(fi); A] = tr‚Pexp
h
i
e

4
[‚—; ‚� ]

TZ
0

dfiF—�(x(fi))
i

(33)

trace denote the Dirac trace and P is the path ordering, and the minus sign
implements the Fermi statistics.
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A more modern way of writing the same spin factor is in terms of an additional
Grassmann path integral which is written as

Spin[x(fi); A] =

Z
ABC

D exp
h
−

TZ
0

dfi
`1

2
 ·  ̇ − ie —F—� �

´i
(34)

Here the path integration is over the space of anticommuting functions which are
anti-periodic in proper-time:

 —(fi1) �(fi2) = − �(fi2) —(fi2) ;  (T ) = − (0)

The  —’s effectively replace the Dirac matrices ‚—’s, but are functions of the
proper-time, and thus will appear in all possible orderings after the expansion of
the exponential.

Therefore we need the Grassmann Gauss integrals.
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One can show thatthe Grassmann variables satisfy:Z
d  = 1 ;  2 = 0 (35)

therefore the most general function of the form

f ( ) = a + b →
Z
d (a + b ) = b

As a function of two variables this function is

g( 1;  2) = a + b 1 + c 2 + d 1 2 →
Z
d 1

Z
d 2g( 1;  2) = −d

One can form the Gaussian integral, let’s  = ( 1;  2) and M be a real
antisymmetric matrix, then

e−
1
2
 T ·M· = e−M12 1 2 = 1−M12 1 2

therefore it follows Z
d 1

Z
d 2e

− 1
2
 T ·M· = M12
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But since M is antisymmetric

detM = −M12M21 = M2
12 →

Z
d 2

Z
d 1e

− 1
2
 T ·M· = ±(detM)

1
2 (36)

It is easy to generalise it to an 2n × 2n antisymmetric matrix M and showZ
d 1

Z
d 2 · · ·

Z
d 2n e

− 1
2
 T ·M· = ±(detM)

1
2 (37)

Extending the Bosonic Gaussian integrals to the Grassmann fields leads toR
d 1 · · ·

R
d ne

− 1
2
 T ·M· + ·JR

d 1 · · ·
R
d ne

− 1
2
 T ·M· 

= e
1
2
J·M−1·J (38)

which by differentiation we get (note that J is also Grassmann valued variable)R
d 1 · · ·

R
d n i  je

− 1
2
 T ·M· + ·JR

d 1 · · ·
R
d ne

− 1
2
 T ·M· 

= M−1
i jR

d 1 · · ·
R
d n  i j k le

− 1
2
 T ·M· + ·JR

d 1 · · ·
R
d ne

− 1
2
 T ·M· 

= M−1
i j M

−1
kl −M

−1
ik M

−1
j l +M−1

i l M
−1
jk

(39)
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Now comparing to the Grassmann path integral we have, we see that M now
corresponds to the first derivative d

dfi
acting on the space of antiperiodic

functions. Its inverse is quite simple:

GF (fi; fi ′) = 2〈fi |
“
d

dfi

”−1

|fi ′〉 = sign(fi − fi ′) (40)

Then we need the Wick contraction for Grassmannian fields which are

〈 —(fi1) �(fi2)〉 =
1

2
GF (fi1 − fi2)‹—�

〈 —(fi1) �(fi2) ¸(fi3) ˛(fi4)〉 =
1

4

“
GF 12GF 34‹

—�‹¸˛ − GF 13GF 24‹
—¸‹�˛

+GF 14GF 23‹
—˛‹�¸

”
We also need the free path integral normalizationZ

ABC

D e
− 1

2

R T
0
dfi · ̇

= 2D=2 (41)

where D is any even spacetime dimension, and note that 2D=2 is the number of
real degrees of freedom of Dirac spinors in even dimensions.
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N-PHOTON AMPLITUDE IN SPINOR QED

The processes of obtaining N-photon amplitude is completely analogous
to the scalar QED case. The only modification is the pre-factor −1=2, a
kinetic term for the Grassmann fields and a new vertex operator

V ‚spin[k; "] =

TZ
0

dfi
`
" · ẋ(fi) + 2i" ·  (fi) k ·  (fi)

´
e ik·x(fi) (42)

Therefore the N-photon amplitude is simply

Γspin[k1; "1; · · · ; kN ; "N ] = −1

2
(−ie)N

∞Z
0

dT

T
e−m

2T

Z
x(0)=x(T )

Dx(fi)e
− 1

4

R T
0
dfiẋ2

×
Z

ABC

D e
− 1

2

R T
0
dfi · ̇

V ‚spin[k1; "1] · · · V Nspin[kN ; "N ]
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To generalize the Bern-Kosower master formula to spinor QED one needs to
use the worldline supersymmetry which we just quote the master formula here
(see Schubert 2001):

Γspin[A] = −2(−ie)N(2ı)D‹(
X
i

ki )

∞Z
0

dT

T
e−m

2T (4ıT )−D=2

NY
i=1

TZ
0

dfii

Z
d„i

×exp

 NX
i ;j=1

h
1

2
Ĝi jki · kj + iDi Ĝi j "i · kj +

1

2
DiDj Ĝi j "i · "j

iff˛̨̨
lin "1···"N

where
D =

@

@„
− „ @

@fi
is the super-derivative acting on the super-field

X— = x— +
√

2„ —

and the super-Green’s function

Ĝ(fii ; „i ; fij ; „j) = GBij + „i„jGF ij

with „ a Grassmann valued number
R
d„„ = 1.
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THE VACUUM POLARIZATION (SPINOR QED)

In reality there is a more efficient way to proceed and obtain spinor loop
computation. Let’s first compute the vacuum diagram for spinor QED:

One can simply use two spinor vertex operator and do all possible contractions
for bot x and  fields:

Γspin[k1; "1; k2; "2] = −1

2
(−ie)2

Z
dT

T
e−m

2T

Z
Dx

Z
D 

TZ
0

dfi1

TZ
0

dfi2

×"1—

“
ẋ—1 + 2i —1 k1 ·  1

”
e ik1·x1"2�

“
ẋ�2 + 2i �2 k2 ·  2

”
e ik2·x2 e

−
R T

0
dfi( 1

4
ẋ2+ 1

2
 · ̇)
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Since the Wick contraction does not mix the x and the  fields, the calculation of
the Dx is identical to the scalar case, so one needs to do the Wick contractions
for the Grassmann fields:

(2i)2〈 —1 k1 ·  1  
�
2 k2 ·  2〉 = G2

F 12(‹—�k1 · k2 − k—2 k
�
1 )

Exercise: Add these contractions to the integrand for the scalar case and
multiply the free path integral for the Grassmann fields to obtain the spinor result:

Π
—�
spin[k] = − 8e2

(4ı)D=2
(‹—�k2−k—k�)Γ[2−D=2]

1Z
0

duu(1−u)[m2 +u(1−u)k2]D=2−2

Note that up to the normalization, the parameter integral for the spinor loop is
obtained from the one for the scalar loop simply by replacing

ĠB12ĠB21 → ĠB12ĠB21 − GF 12GF 21
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INTEGRATION BY PARTS (IBP)

The substitution we mentioned is only the simplest case of a more general
replacement rule due to Bern and Kosower (PRL, 66, 1669 (1992)). According
to this replacement rule after expanding the interaction term in the scalar loop
case, at the integrand level one obtains:

PN(Ġ; G̈) e
1
2

P
i ;j=1

GBijki ·kj (43)

where PN is a polynomial in Ġ and G̈ and the kinematic invariants. It is possible
to remove all the second derivatives by adding some IBP leading to a new
polynomial ∼ QN(Ġ)e ···. After doing this properly, QN will have some fi -cycles
(Ġi1 i2 Ġi2 i3 · · · Ġin−1in Ġin i1 ). The integrand of the spinor case in the integrand level
is simply replacing these chains with the following modified chains

Ġi1i2 Ġi2 i3 · · · Ġin−1 in Ġin i1 − GF i1i2GF i2 i3 · · ·GF in−1 inGF in i1 (44)

and supplying the factor of −2 which comes from the statistics and the
Grassmann free path integral (in D = 4).
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With IBP we do not need the Wick contractions for the Grassmann fields
anymore, and besides removing the G̈’s has following properties:
¨ It should maintain the permutation symmetry between the photons.

¨ It should lead to QN in which all polarization vectors ("i ’s) are
absorbed into the corresponding field strength tensor

f —�i = k—i "
�
i − k�i "

—
i

which assures the manifest transversality at the integrand level, which
is extremely helpful.

¨ It should be systematic enough to be computerized.
We have developed such an algorithm not many years ago, (JHEP 1301, 312
(2013)) and applied it to the form factor decomposition of the three- and
four-gluon vertices (off-shell) and also off-shell four-photon amplitude.
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Exercise
For N = 3 after expanding the master formula one obtains the following
polynomial P3

P3 = Ġ1i"1 · ki Ġ2j"2 · kj Ġ3k"3 · kk − G̈B12"1 · "2 Ġ3i"3 · ki
−G̈B13"1 · "3 Ġ2i"2 · ki −−G̈B23"2 · "3 Ġ1i"1 · ki (45)

Add some total derivatives to P3 to remove all second derivatives and find the
following new polynomial Q3

Q3 = Q3
3 +Q2

3 (46)

in which

Q3
3 = ĠB12ĠB23ĠB31tr(f1f2f3)

Q2
3 =

1

2
ĠB12ĠB21tr(f1f2)ĠB3i"3 · ki + 2 perm (47)

Hint:
To remove the term involving G̈B12ĠB31 you need to add the following term to P3

−@2

“
ĠB12"1 · "2 ĠB31"3 · k1 e

1
2

P3

i ;j=1
GBijki ·kj

”
(48)

and similar terms for other terms. After removing all the G̈’s and collecting all
terms you should obtain Q3

3 and Q2
3.
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EULER-HEISENBERG LAGRANGIAN

Right from beginning when we introduced the coupling of a particle with
electromagnetic field (A—), we mentioned that this field is general and it could be
either quantum field (which we considered as a sum of plane waves and later we
derived the Bern-Kosower master formula in vacuum) or it could be a classical
external field or a sum of two. In this part of our lecture we consider only an
external constant electromagnetic field to derive the well-known
Euler-Heisenberg Lagrangian which Felix Karbstein also derived in his lectures.
For a constant field it is convenient for us to work in the Fock-Schwinger gauge
with a fixing center-point xc to be defined as

(x − xc)—A—(x) = 0

Therefore, the gauge field can be Taylor expanded as

A—(xc + q) =
1

2
F�—q� +

1

3
(@¸F�—)q¸q� + · · ·

which for a constant field strength tensor one just have the first term in the rhs:

A—(xc + q) =
1

2
F�—q� (49)
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Therefore the effective action in the presence of an external field for the
spinor-loop reads as

Γspin[A] = −1

2

∞Z
0

dT

T
e−m

2T

Z
dDx0

Z
PBC

Dq(fi)e
−
R T

0
dfi [ 1

4
q̇2+ 1

2
ieq·F·q̇]

×
Z

ABC

D (fi) e
−
R T

0
dfi [ 1

2
 · ̇−ie ·F· ] (50)

Note that the zero-mode integral
R
dDx0 is empty since we have no dependence

of the zero-mode in the effective action (as expected for a constant field), it gives
an infinite volume factor, therefore we introduce the effective Lagrangian as

Γspin[A] =

Z
dDx0 L
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where

L[F] = −1

2

∞Z
0

dT

T
e−m

2T

Z
PBC

Dq(fi)e
−
R T

0
dfi [ 1

4
q̇2+ 1

2
ieq·F·q̇]

×
Z

ABC

D (fi) e
−
R T

0
dfi [ 1

2
 · ̇−ie ·F· ] (51)

And this time we will not need any expansions to get the worldline path integrals
into gaussian form they are already Gaussian. Using our formulas we introduced
for the Gaussian integrals for bosonic and Grassmann fields we can write the
path integrals in terms of determinant factors:
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Using the formulas for the free-path integrals:Z
PBC

Dq e
−
R T

0
dfi 1

4
q̇2

=
“

4ıT
”−D=2

Z
ABC

D e
−
R T

0
dfi 1

2
 · ̇

=
“

2
”D=2

(52)

We set D = 4 (we multiply and divide the effective action with the normalization
factors for the bosonic and Grassmann fields according to Eqs. (15,26;37,41)

L[F ] = −1

2

∞Z
0

dT

T
e−m

2T (4ıT )−2

R
PBC

Dqe
−
R T

0
dfi [ 1

4
q̇2+ 1

2
ieq·F ·q̇]R

PBC
Dqe

−
R T

0
dfi 1

4
q̇2

×(22)

R
ABC

D (fi) e
−
R T

0
dfi [ 1

2
 · ̇−ie ·F · ]R

ABC
D (fi) e

−
R T

0
dfi 1

2
 · ̇

(53)
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which can be written in terms of determinants (see eqs. 15 and 37)

L[F] = −2

∞Z
0

dT

T
e−m

2T (4ıT )−2
Det′

− 1
2

PBC

“
− 1

4
d2

dfi2 + 1
2
ieF d

dfi

”
Det′

− 1
2

PBC

“
− 1

4
d2

dfi2

”
×

Det′
1
2
ABC

“
d
dfi
− 2ie 1

2
F
”

Det′
1
2
ABC

“
d
dfi

”
= −2

∞Z
0

dT

T
e−m

2T (4ıT )−2Det′
− 1

2
PBC

“
1− 2ieF(

d

dfi
)−1
”

×Det′
1
2
ABC

“
1− 2ie

1

2
F(

d

dfi
)−1
”

(54)

Here note that we have eliminated the zero-mode contributions (the zero
eigenvalues) which in the determinant it is indicated by a prime.
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Thus we now have to calculate the determinant of the same operator:

O(F) = 1− 2ieF(
d

dfi
)−1 (55)

acting once in the space of periodic functions and once in the space of
anti-periodic functions. Note also that the determinant of O(F) must be a
Lorentz scalar, and it is not possible to form such a scalar with an odd number of
field strength tensors F . We can write

|O(F)|2 = |1− 2ieF(
d

dfi
)−1| |1 + 2ieF(

d

dfi
)−1| = |1 + 4e2F2(

d

dfi
)−2|
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In classical electrodynamics for a generic constant field there is always a
Lorentz frame in which both electric and magnetic fields are pointing on the
z-axis. The euclidean field strength tensor then takes the form

F =

0B@ 0 B 0 0
−B 0 0 0

0 0 0 iE
0 0 −iE 0

1CA (56)

and

F2 =

0B@−B
2 0 0 0

0 −B2 0 0
0 0 E2 0
0 0 0 E2

1CA (57)

Plugging back to the determinant and taking the square root

|O(F)| = |1 + 4e2E2(
d

dfi
)−2| |1− 4e2B2(

d

dfi
)−2| (58)

Thus we have managed to reduce the original matrix operator to usual
(one-component) operators.
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Next we determine the spectrum of the operator d2

dfi2 for two boundary
conditions. To do so, we need to solve the following eigenvalue equations:

− d2

dfi 2
f (fi) = –nf (fi) (59)

For the periodic case (the bosonic field), a basis of eigenfunctions is given by

{ffln; ffl̃n} =
n

cos(
2ınfi

T
); sin(

2ınfi

T
)
o

; n = 1; 2; · · · (60)

with

–n =
(2ın)2

T 2

For the antiperiodic case

{»n; »̃n} =
n

cos(
2ı(n + 1

2
)fi

T
); sin(

2ı(n + 1
2
)fi

T
)
o
; n = 0; 1; 2; · · · (61)

with

–n =
(2ı(n + 1

2
))2

T 2
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After using the following Euler infinite series

sin x

x
=

∞Y
n=1

“
1− x2

n2ı2

”
sinh x

x
=

∞Y
n=1

“
1 +

x2

n2ı2

”
cos x

x
=

∞Y
n=0

“
1− x2

(n + 1
2
)2ı2

”
cosh x

x
=

∞Y
n=0

“
1 +

x2

(n + 1
2
)2ı2

”
(62)
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and putting all together the EHL is obtained as

L[F] = −2

∞Z
0

dT

T
(4ıT )−2 e−m

2T eET

sin(eET )

eBT

sinh(eBT )
cos(eET ) cosh(eBT )

= −2

∞Z
0

dT

T
(4ıT )−2 e−m

2T eET

tan(eET )

eBT

tanh(eBT )
(63)

This is the famous Lagrangian found by Euler and Heisenberg in 1936 as one of
the first nontrivial results in quantum electrodynamics. It tell us that even though
in classical electrodynamics there is no interaction between photons but in
quantum electrodynamics (QED) (after quantization) because of the presence of
virtual electron-position pairs such interactions do arise and lead to very
interesting nonlinear effects.
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SCHWINGER PAIR-PRODUCTION

The effective Lagrangian we obtained needs to be analyzed carefully
since it has an UV divergence at T = 0, but Felix Karbstein in his lecture
showed us how to deal with this problem properly. Beside this issue the
term 1

tan(eET ) has poles in

Tn =
nı

eE
(64)

but it is a simple application of complex analysis to show for a pure
electric field (B = 0) this effective Lagrangian has an imaginary part

ImL =
(eE)2

8ı3

∞X
n=1

e−nı
m2

eE (65)
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Which Sauter in 1932 interpreted as the vacuum instability which leads
the virtual electron-positron pairs to gain enough energy from the
electric field to turn real. However, the probability for this to happen
becomes significant only at about Ec ≈ 1018V =cm.
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ONE-LOOP MULTIPHOTON AMPLITUDE IN THE PRESENCE OF A CONSTANT
FIELD

In this part of our lecture we generalize the Bern-Kosower master formula and
include an external constant field. Mathematically, the constant field is one of the
very few known field configurations for which the Dirac equation can be solved
exactly. In the following we use the Fock-Schwinger gauge defined in Eq. (49)
centered at xc = x0. Let’s first rewrite the effective action for Spinor QED in the
presence of a constant field

Lspin[A;A] = −1

2

∞Z
0

dT

T
e−m

2T

Z
PBC

Dx(fi)

Z
ABC

D (fi) e
−
R T

0
dfiLspin (66)

where A(F ) is the quantum gauge field (quantum field strength tensor) and
A(F) is the external vector field (classical field strength tensor), the Lagrangian
is given by

Lspin =
1

4
ẋ2 +

1

2
 ·  ̇ + ieA · ẋ − ie · F ·  + ∆Lspin (67)
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where ∆Lspin is due to the presence of the external constant field in
Fock-Schwinger gauge

∆Lspin =
1

2
ieq—F—� q̇� − ie —F—� �

F is the corresponding field strength tensor for A. In terms of superfield
formalism this extra Lagrangian is written in a much compact way as

∆Lspin = −1

2
ieX—F—�DX�

.
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Note that since the extra terms are still quadratic in the worldline fields (q;  ), we
need not need to consider it as part of the interaction Lagrangian, we can absorb
it into the free worldline propagator and obtain the exact propagator in the
presence of the constant field. This means to replace the Green’s functions we
had for the vacuum case with the following modified expressions:

2〈fii |
“
d2

dfi 2
− 2ieF d

dfi

”−1

|fij〉 ≡ GB(fii ; fii ) ≡ GBij

2〈fii |
“
d

dfi
− 2ieF

”−1

|fij〉 ≡ GF (fii ; fij) ≡ GF ij (68)

See Appendix B of Schubert 2001 for the details of how calculating these
inverses which eventually lead to

GBij =
T

2Z2

“ Z
sinZ e

−iZĠBij + iZĠBij − 1
”

GF ij = GF ij
e−iZĠBij

cosZ (69)

with Z ≡ eFT . Note that these expressions are power series of the Lorentz
matrix Z and they do not require F to be invertible.
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Properties of these Green’s functions:

¨ They are still translational invariance in fi (functions of (fii − fij )).

¨ We have avoided an explicit case distinction between fii > fij and
fij > fii by writing them in terms of the vacuum Green’s function GB
and GF .

¨

GB(fii ; fij) = GTB(fij ; fii ) ; ĠB(fii ; fij) = −ĠTB(fij ; fii )

¨

GF (fii ; fij) = −GTF (fij ; fii )

In terms of Wick contractions they correspond to the following generalization of
the vacuum case:

〈q—(fii ) q
�(fij)〉 = −G—�Bij

〈 —(fii ) 
�(fij)〉 =

1

2
G—�F ij (70)
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In the following we will also need the first and second derivatives of GBij

ĠBij ≡ 2〈fii |
“
d

dfi
− 2ieF

”−1

|fij〉 =
i

Z

“ Z
sinZ e

−iZĠBij − 1
”

G̈Bij ≡ 2〈fii |
“

1− 2ieF(
d

dfi
)−1
”−1

|fij〉 = 2‹i j −
2Z

T sinZ e
−iZĠBij (71)

The above Green’s functions have non-vanishing coincidence limits contrary to
the vacuum case:

GB(fi; fi) =
T

2Z2

“
Z cotZ − 1

”
ĠB(fi; fi) = i cotZ − i

Z
GF (fi; fi) = −i tanZ (72)

which can be obtained from the Taylor expansion of Eqs. (69,71) and using the
following rules for the vacuum case (from symmetry and continuity)

ĠB(fi; fi) = 0 ; Ġ2
B(fi; fi) = 1
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Since we have already mentioned the super-symmetric Green’s function and the
Wick contractions of the super-fields for the vacuum case it is also possible to
assemble GB and GF into a super propagator:

〈Y —(fii ; „i ) Y
�(fij ; „j) = −Ĝ—�(fii ; „i ; fij ; „j)

Ĝ(fii ; „i ; fij ; „j) ≡ GBij + „i„jGF ij (73)

The only further required information one needs to write down the Bern-Kosower
type master formula for multi-photon amplitude (one-loop) in a constant field
background is the change in the free path integral determinants due to the
presence of the background field:“

4ıT
”−D

2 →
“

4ıT
”−D

2
det−

1
2

h
sinZ
Z

i
(for scalar loop)“

4ıT
”−D

2 →
“

4ıT
”−D

2
det−

1
2

h
tanZ
Z

i
(for spinor loop) (74)
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THE N-PHOTON AMPLITUDE IN A CONSTANT FIELD

Following the steps we have already mentioned to obtain the master equation for
N-photon amplitude for the scalar loop in vacuum and applying the above
changes it is straightforward to write down the following N-photon amplitude in
the presence of a constant field (in the Fock-Schwinger gauge)

Γscal[k1; "1; · · · ; kN ; "N ] = (−ie)N(2ı)D‹
“ NX

i=1

ki

”

×
∞Z

0

dT

T
(4ıT )−

D
2 e−m

2T det−
1
2

h
sinZ
Z

i NY
i=1

TZ
0

dfii

×exp
n NX
i ;j=1

ˆ1

2
ki · GBij · kj − i"i · ĠBij · kj +

1

2
"i · G̈Bij · "j

io˛̨̨
linear in "1"2···"N
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To avoid using the super-field master formula for the spinor case, in the
presence of a constant background field one can still use the replacement rules
in the vacuum case with minor modifications. The spinor QED integrand for a
given number of photons is obtained from the scalar QED integrand by the
following generalization of the Bern-Kosower replacement rules:
¨ IBP: after expanding out the exponential in Eq. (75) and taking linear

terms in all polarization vectors, remove all G̈Bij by suitable IBP as the
vacuum case.

¨ Apply the replacement rules mentioned in Eq. (44) to the new
integrand with ĠB and GF substituted by ĠB and GF respectively. Note
that since the later Green’s functions are nontrivial matrices of the
Lorentz indices the cycle property is defined solely in terms of the
fi -indices, irrespectively of the structure of the Lorentz indices. For
instance:

"1 · ĠB12 · k2 "2 · ĠB23 · k3 "3 · ĠB31 · k1 →
("1 · ĠB12 · k2 "2 · ĠB23 · k3 "3 · ĠB31 · k1

−"1 · GF12 · k2 "2 · GF23 · k3 "3 · GF31 · k1)
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¨ The only difference with respect to the replacement rule in the
vacuum case is the non-vanishing coincidence limits of the Green’s
functions which leads to the extension of the replacement rule to
include one-cycle as

ĠB(fii ; fii )→ ĠB(fii ; fii )− GF (fii ; fii )

¨ Remember also that the free-path integral is different for spinor case
therefore we also need to replace

det−
1
2

h sinZ
Z

i
→ det−

1
2

h tanZ
Z

i
¨ Finally, one also need to multiply the usual factor of −2 for statistics

and degrees of freedom of fermions as we discussed in the vacuum
case.
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Scalar propagator in vacuum and in
constant background fields
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SCALAR PROPAGATOR COUPLED TO A—

At the beginning of our lecture we derived the wordline representation of
the free scalar propagator which is

Dxx
′

0 =

∞Z
0

dTe−m
2T

x(T )=xZ
x(0)=x ′

Dxe
−
R T

0
dfi 1

4 ẋ
2

(75)

Now we couple this scalar propagator to a gauge field A— to derive a
Bern-Kosower master formula for the propagator, which along its
propagation it absorbs and emits an arbitrary number of photons. This
master formula (in configuration space) will represent the following set of
Feynman diagrams:
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According to the above diagrams, the worldline representation of this amplitude
is obtained by inserting N number of scalar vertex operator defined in Eq. (20)

Γscal[x; x
′; k1; "1; · · · ; kN ; "N ] = (−ie)N

∞Z
0

dTe−m
2T

x=xZ
x(0)=x ′

Dx(fi) e
− 1

4

R T
0
dfiẋ2

×
TZ

0

NY
i=1

dfii V
‚ [k1; "1] · · · V ‚ [kN ; "N ] (76)

which after substituting the vertex operator back to the propagator, and applying
the split in Eq. (6) one gets

Γscal[x; x
′; k1; "1; · · · ; kN ; "N ] = (−ie)N

∞Z
0

dTe−m
2T e

(x−x′)2

4T

Z
q(0)=q(T )=0

Dq(fi)

×e−
1
4

R T
0
dfiq̇2

TZ
0

NY
i=1

dfii e

PN

i=1
["i ·

x−x′
T

+"i ·q̇i+iki ·(x−x ′)
fii
T

+iki ·x ′+iki ·qi ]
˛̨̨

line "1"2···"N
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Now if we Fourier transform the scalar legs of the master formula to momentum
space (note that all external particles are ingoing)

Γscal[p; p
′; k1; "1; · · · ; kN ; "N ] =

Z
dDx

Z
dDx ′ e ip·x+ip′·x ′Γscal[x; x

′; k1; "1; · · · ; kN ; "N ]

By changing the integration variables x and x ′ to

x − x ′ = x− ; x + x ′ = 2x+

The x+ integral just produces the usual energy-momentum conservation factor:

Γscal[p; p
′; k1; "1; · · · ; kN ; "N ] = (−ie)N(2ı)D‹D

“
p + p′ +

X
i

ki

”
×
∞Z

0

dT e−m
2T (4ıT )−

D
2

Z
dDx−e

−
x2
−

4T

×
TZ

0

NY
i=1

dfii e
ix−·(p+

P
i

ki fii
T

)
e

P
i

"i ·x−
T e

P
i ;j

[∆i jki ·kj−2i •∆i j"i ·kj−•∆•i j"i ·"j ]
˛̨̨

line "1"2···"N
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where we have introduced the open-line Green’s function (which has to satisfy
the DBC)

〈q—(fi)q�(fi)〉 = −2‹—�∆(fi1; fi2) (77)

which is related to the loop Green’s function through

∆(fi; fi ′) =
1

2

“
GB(fi; fi ′)− GB(fi; 0)− GB(0; fi ′) + GB(0; 0)

”
The open line Green’ function has non-trivial coincidence limit

∆(fi; fi) =
fi 2

T
− fi (78)

and we also introduced its first and second derivatives

•∆(fii ; fij) =
fij
T

+
1

2
sign(fii − fij)−

1

2

∆•(fii ; fij) =
fii
T
− 1

2
sign(fii − fij)−

1

2

•∆•(fii ; fij) =
1

T
− ‹(fii − fij) (79)

Page 67 Member of the Helmholtz Association

Ahmadiniaz | Theoretical Physics | www.hzdr.de



After doing the x− integral in our master formula we get some cancellations
between terms and eventually one gets the momentum space master formula for
the propagator:

Γscal[p; p
′; k1; "1; · · · ; kN ; "N ] = (−ie)N(2ı)D‹D

“
p + p′ +

X
i

ki

” ∞Z
0

dT e−T (m2+p2)

×
TZ

0

NY
i=1

dfii e

PN

i;j=0

ˆ
1
2
|fii−fij |Ki ·Kj−isign(fii−fij )"i ·Kj+‹(fii−fij )"i ·"j

˜˛̨̨
line "1"2···"N

considering

K0 ≡ P
Ki ≡ ki ; i = 1; 2; · · · ; N
KN+1 ≡ p′ ; fi0 = T ; fiN+1 = 0 ; "0 = "N+1 = 0
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We applied the master formula to reconstruct the one-loop corrections to the
scalar propagator and its vertex in a much straightforward way than standard
computations (see PRD 93 (2016) 045023)

one-loop correction to the scalar propagator using N = 2 and sewing the photons.

One-loop corrections to the scalar vertex using N = 3 and sewing two external photons.

Page 69 Member of the Helmholtz Association

Ahmadiniaz | Theoretical Physics | www.hzdr.de



THE PROPAGATOR IN A CONSTANT FIELD
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THE DRESSED SCALAR PROPAGATOR IN A CONSTANT FIELD
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