INSTITUTE

OF TECHNICAL
AND EXPERIMENTAL
CTU IN PRAGUE

JOINT INSTITUTE FOR NUCLEAR RESEARCH

Space Dimension Dynamics and Modified Coulomb Potential

 of Quarks - Dubna PotentialTalk based on: Martin Bureš, Nugzar Makhaldiani, Space Dimension Dynamics and Modified Coulomb Potential of Quarks - Dubna Potentials, Physics of Elementary Particles and Atomic Nuclei, Letters, 2019, Vol. 16, issue 6.

Martin Bureš1,2 in collaboration with Nugzar Makhaldiani ${ }^{1}$
1 Joint Institute for Nuclear Research, Dubna, Russia
${ }^{2}$ Institute of Experimental and Applied Physics, CTU Prague, Czechia

July 31, 2019, JINR, Dubna, Russia

Introduction

- Quarkonium spectroscopy indicates that between valence quarks inside hadrons, the potential on small scales has $D=3$ Coulomb form and at hadronic scales has $D=1$ Coulomb one.
- We may form an effective potential in which at small scales dominates $D=3$ component and at hadronic scale - $D=1$, the Coulomb-plus-linear potential (the "Cornell potential"):

$$
V(r)=-\frac{k}{r}+\frac{r}{a^{2}}=\mu\left(x-\frac{k}{x}\right), \mu=1 / a=0.427 \mathrm{GeV}, x=\mu r,
$$

where $k=\frac{4}{3} \alpha_{s}=0.52=x_{0}^{2}, x_{0}=0.72$ and $a=2.34 \mathrm{GeV}^{-1}$ were chosen to fit the quarkonium spectra [Eichten et al 1978].

- We consider the dimension $D(r)$ of space of hadronic matter dynamically changing with r and corresponding Coulomb potential

$$
V_{D}(r) \sim r^{2-D(r)}
$$

where effective dimension of space $D(r)$ changes from 3 at small r to 1 at hadronic scales $\sim 1 \mathrm{fm}$.

Coulomb problem in D-dimensions

Poisson equation with point-like source in D-dimensional space, $\Delta \varphi=e \delta^{D}(x)$, has the solution

$$
\begin{gathered}
\varphi(D, r)=-\frac{\Gamma(D / 2)}{2(D-2) \pi^{D / 2}} e r^{2-D}, \\
V(D, r)=e \varphi(D, r)=-\alpha(D) r^{2-D}, \alpha(D)=\frac{e^{2} \Gamma(D / 2)}{2(D-2) \pi^{D / 2}}, \\
V(3, r)=-\frac{\alpha(3)}{r}=-\frac{e^{2}}{4 \pi r}, V(4, r)=-\frac{\alpha(4)}{r^{2}}=-\frac{e^{2}}{4 \pi^{2} r^{2}} .
\end{gathered}
$$

Indeed,

$$
\begin{gathered}
\int d^{D} \times \Delta \varphi=\Omega_{D} r^{D-1} \frac{d}{d r} \frac{a_{D}}{r^{D-2}}=-(D-2) \Omega_{D} a_{D}=e, a_{D}=-\frac{e}{(D-2) \Omega_{D}}, a_{3}=-\frac{e}{4 \pi}, \\
\int d x^{D} e^{-x^{2}}=\left(2 \pi \int_{0}^{\infty} d r r r^{-r^{2}}\right)^{D / 2}=\pi^{D / 2}=\Omega_{D} \int_{0}^{\infty} d r r^{D-1} e^{-r^{2}}=\frac{\Omega_{D}}{2} \Gamma(D / 2), \Omega_{D}=\frac{2 \pi^{D / 2}}{\Gamma(D / 2)} .
\end{gathered}
$$

Coulomb problem in D-dimensions

- As defined so far, the coupling constant has a mass dimension $d_{e}=(D-3) / 2=-\varepsilon$. To work with a dimensionless coupling constant e, we introduce the mass scale μ.
- Then, the potential energy takes the following form

$$
\begin{aligned}
V(D, r) & =-\frac{\Gamma(D / 2)}{2(D-2) \pi^{D / 2}} e^{2} \mu^{2 \varepsilon} r^{2-D} \\
& =-\alpha(D)(\mu r)^{2 \varepsilon} / r \\
& =-\alpha(D) x^{2-D} \mu .
\end{aligned}
$$

Dimension dynamics from Cornell potential

- Cornell potential contains QCD dynamics. We may compare it with Coulomb potential with dynamical dimension. Let us define dimension of space from the equality of $V(r)=\mu\left(x-\frac{k}{x}\right)$ and $V(D, r)=-\alpha(D) r^{2-D}$:

$$
\frac{k-x^{2}}{x^{3-D}}=\alpha(D)=\frac{e^{2} \Gamma(D / 2)}{2(D-2) \pi^{D / 2}}=\alpha_{s} \frac{2 \Gamma(D / 2)}{(D-2) \pi^{(D-2) / 2}}, \alpha_{s}=\frac{e^{2}}{4 \pi} .
$$

- For any values of x and D

$$
\alpha_{s}(D, x)=\frac{\pi^{(D-2) / 2}}{2 \Gamma(D / 2)}(D-2) \alpha, \alpha=\frac{k-x^{2}}{x^{3-D}}=\left(k-x^{2}\right) x^{D-3} .
$$

- At the point $D=1, x=x_{1}$,

$$
\alpha_{s}\left(1, x_{1}\right)=\frac{1}{2 \pi}\left(1-\frac{k}{x_{1}^{2}}\right), x_{1}^{2}>x_{0}^{2}=k
$$

Hamiltonian formulation of space dimension dynamics

- Let us consider simplest Hamiltonian dynamics

$$
\begin{aligned}
& \dot{x}_{1}=\left\{H, x_{1}\right\}, \\
& \dot{x}_{2}=\left\{H, x_{2}\right\},
\end{aligned}
$$

for dynamical variables (phase space) $\left(x_{1}, x_{2}\right)$, Hamiltonian H

$$
H=\frac{p^{2}}{2 m}+V(x)=\frac{x_{1}^{2}}{2 m}+V\left(x_{2}\right)
$$

and Poisson structure

$$
\{A, B\}=f_{n m} \frac{\partial A}{\partial x_{n}} \frac{\partial B}{\partial x_{m}}=f_{12}\left(\frac{\partial A}{\partial x_{1}} \frac{\partial B}{\partial x_{2}}-\frac{\partial A}{\partial x_{2}} \frac{\partial B}{\partial x_{1}}\right) .
$$

- Instead of solving the system of motion equations, we may solve them in a semi-algebraic way: having one integral of motion Hamiltonian, we may find x_{1} from the Hamiltonian, insert it in the motion equation for x_{2} and solve it.
- The variables x, D and α are nonnegative, so it is natural to introduce, free from this restriction, variables:

$$
\begin{aligned}
t & =\ln x \\
x_{1} & =\ln \alpha_{s} \\
x_{2} & =\ln D
\end{aligned}
$$

- Then we obtain the following Hamiltonian and motion equations

$$
\begin{aligned}
& H\left(x_{1}, x_{2}, t\right)=x_{1}-V\left(x_{2}, t\right) \Rightarrow x_{1}=V\left(x_{2}, t\right) \\
& \dot{x}_{1}=f_{12} \frac{\partial V}{\partial x_{2}}, \\
& \dot{x}_{2}=-f_{12}, V\left(x_{2}, t\right)=\ln \left(\frac{\pi^{(D-2) / 2}}{2 \Gamma(D / 2)}(D-2) \frac{k-x^{2}}{x^{3-D}}\right) .
\end{aligned}
$$

- We may also take $x_{1}=\alpha$, then

$$
\begin{aligned}
& x_{1}=V\left(t, x_{2}\right)=\left(k-x^{2}\right) x^{D-3}=\left(k-x^{2}\right) x^{\exp \left(x_{2}\right)-3}=\left(k-e^{2 t}\right) e^{t\left(e^{-t}-3\right)}, \\
& \dot{x}_{1}=\frac{\partial V}{\partial x_{2}}=\left(k-x^{2}\right) x^{e_{2}-3} \ln x e^{x_{2}}=\left(k-e^{2 t}\right) t e^{t\left(e^{-t}-3\right)} e^{-t}, f_{12}=1, \\
& \dot{\alpha}=\beta=t e^{-t} \alpha=\beta_{1} \alpha, \beta_{1}=\ln \frac{\alpha e^{3 t}}{k-e^{2 t}} \\
& \dot{x}_{2}=-1 \Rightarrow x_{2}=-t, D=1 / x \\
& \alpha_{s}(D, x)=\frac{\pi^{(D-2) / 2}}{2 \Gamma(D / 2)}(D-2) \frac{k-x^{2}}{x^{3-D}}=\frac{\pi^{(1 / x-2) / 2}}{2 \Gamma(1 / 2 x)}(1 / x-2) \frac{k-x^{2}}{x^{3-1 / x}} \\
& =\frac{\pi^{(1 / x-2) / 2}}{2 \Gamma(1 / 2 x)}(1 / x-2)(\sqrt{k}-x) \frac{\sqrt{k}+x}{x^{3-1 / x}} .
\end{aligned}
$$

Figure: α_{s} as a function of $x=\mu r \in(0.01,1.0)$

Figure: α_{s} as a function of $x=\mu r \in(0.72,5)$

- Note that $x>0$ and $\alpha_{s} \geq 0$ when $x<\min (1 / 2, \sqrt{k})=1 / 2$ or $x>\max (1 / 2, \sqrt{k})=\sqrt{k}=0.72$ and for $0.5<x<0.72, \alpha_{s}<0$, see figures 1 and 2.
- For $x_{1}=1$, we have from $\alpha_{s}\left(1, x_{1}\right)$

$$
\alpha_{s}=\frac{1}{2 \pi}(1-k)=\frac{0.48}{2 \pi}=0.0764 .
$$

- We may exclude the negative values by using different values of μ : $x_{1}=r \mu_{1}=1 / 2, x_{2}=r \mu_{2}=0.72, \mu_{2} / \mu_{1}=1.44$.

Compactification and Dimension dynamics

Let us take one of the dimensions y as circle with radius R. This corresponds to a periodic structure with a point charge sources at each point $y_{n}=y+2 \pi R n, n=0, \pm 1, \pm 2, \ldots$

$$
\begin{aligned}
& \Delta \varphi=e \sum_{n} \delta^{D}(x) \delta\left(y_{n}\right), \varphi(D, r, y)=\sum_{n} \varphi\left(D, r, y_{n}\right), \\
& V(D, r, y)=-\alpha(D+1) \sum_{n=-\infty}^{\infty}\left(r^{2}+(2 \pi R n+y)^{2}\right)^{(1-D) / 2} .
\end{aligned}
$$

When $D=3$, the potential can be writen in a closed form [Bures, Siegl 2014]
$V(3, r, y)=-\frac{\alpha(4)}{2 R r} \frac{\sinh (r / R)}{\cosh (r / R)-\cos (y / R)}=\left\{\begin{array}{ll}-\alpha(4) /(2 R r), & r \gg R \\ -\alpha(4) /\left(r^{2}+y^{2}\right), & r, y \ll R\end{array}\right.$,
where $\alpha(4) /(2 R)=\alpha(3)$.
12 of 23

Compactification and Dimension dynamics

Alternatively, we can rewrite the potential as

$$
V(3, r, y)=-\frac{\alpha(4)}{4 R r}\left[\operatorname{coth}\left(\frac{r+\mathrm{i} y}{2 R}\right)+\operatorname{coth}\left(\frac{r-\mathrm{i} y}{2 R}\right)\right],
$$

or, using

$$
A^{-\alpha}=1 / \Gamma(\alpha) \int_{0}^{\infty} d t t^{\alpha-1} e^{-t A}
$$

by means of the Theta function as

$$
\begin{aligned}
V(3, r, y)=-\alpha(4) \int_{0}^{\infty} d t e^{-t r^{2}} & \sum_{-\infty}^{\infty} e^{-t(2 \pi R n+y)^{2}} \\
& =-\alpha(4) \int_{0}^{\infty} d t e^{-t r^{2}} \frac{\theta\left(\frac{\mathrm{i} y}{2 \pi R}, e^{\frac{i}{4 R^{2} t}}\right)}{2 R \sqrt{\pi} \sqrt{t}}
\end{aligned}
$$

Compactification and Dimension dynamics

- For $y=0$, the potential takes the following simple form

$$
V(3, r, y=0)=-\frac{\alpha(4)}{2 R r} \operatorname{coth} \frac{r}{2 R} .
$$

- From $V(3, r, y)$, we see that for big r, the effective dimension of space is 3 and for small r is 4 .
- For intermediate scales, the effective dimension might change smoothly from 3 to 4 . Integrating $V(3, r, y)$ by coordinate y, we define mean potential depending only on the variable r, [Bures, Siegl 2014]

$$
\bar{V}(3, r)=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \vartheta V_{3}(r, \vartheta)=-\frac{\alpha(4)}{2 R r}=-\frac{\alpha(3)}{r} .
$$

Compactification and Dimension dynamics

- As in the Cornell potential case, we define the dimension dynamics from equality between the corresponding Coulomb potentials:

$$
\begin{aligned}
& \frac{\alpha(4)}{2 r} \frac{\sinh (r / R)}{\cosh (r / R)-\cos (y / R)}=\alpha(D)(x)^{2-D}, \\
& \mu=1 / R, x=\mu r, r^{2}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2} .
\end{aligned}
$$

- From this equality, the dynamical dimension of space $D(y, r)$ is defined as implicit function and needs numerical solution.
- Alternatively, we may define y as an explicit function of x and D as

$$
\begin{aligned}
& y=R \arccos \left(\cosh x-A(D) x^{D-3} \sinh x\right) \\
& A(D)=\frac{\mu \alpha(4)}{2 \alpha(D)}, \alpha(D)=\frac{e^{2} \Gamma(D / 2)}{2(D-2) \pi^{D / 2}}
\end{aligned}
$$

Compactification and Dimension dynamics

If we have two circlular coordinates - a torus, then

$$
\begin{gathered}
\Delta \varphi=e \sum_{n, m} \delta^{D}(x) \delta\left(y_{n}\right) \delta\left(z_{m}\right) \\
\varphi(D, r, y, z)=\sum_{n, m} \varphi\left(D, r, y_{n}, z_{m}\right) \\
V(D, r, y, z)=-\alpha(D+2) \sum_{n, m=-\infty}^{\infty}\left(r^{2}+\left(2 \pi R_{1} n+y\right)^{2}+\left(2 \pi R_{2} m+z\right)^{2}\right)^{-D / 2} .
\end{gathered}
$$

Compactification and Dimension dynamics

General expression for Coulomb potential in $(D+d)$-dimensional space $\mathbb{R}^{D} \times \mathbb{T}^{d}$ where $\mathbb{T}^{d}=S^{1} \times \cdots \times S^{1}(d$-times $)$ is the d-dimensional torus. D refer to the "big" dimensions $\mathbf{x}=\left(x_{1}, \ldots x_{D}\right)$, whereas d to the "small-compactified" ones $\mathbf{y}=\left(y_{1}, \ldots y_{d}\right)$. Then

$$
\begin{aligned}
& \Delta \varphi=e \sum_{n_{1}, \ldots, n_{d}} \delta^{D}(\mathbf{x}) \delta\left(y_{1, n_{1}}\right) \ldots \delta\left(y_{d, n_{d}}\right), \\
& \varphi\left(D, d, r, y_{1}, \ldots, y_{d}\right)=\sum_{n_{1}, \ldots, n_{d}} \varphi\left(D, d, r, y_{1, n_{1}}, \ldots, y_{d, n_{d}}\right), \\
& V(D, d)\left(r, y_{1}, \ldots, y_{d}\right) \\
& =-\alpha(D+d) \sum_{\infty}^{\infty}\left(r^{2}+\left(2 \pi R_{1} n_{1}+y_{1}\right)^{2}+\cdots+\left(2 \pi R_{d}+y_{d}\right)^{2}\right)^{-(D+d-2) / 2} \\
& =-\frac{\alpha(D+d)}{\Gamma\left(\frac{D+d-2}{2}\right)} \int_{0}^{\infty} d t t^{\frac{D+d-4}{2}} e^{-t r^{2}} e^{-t\left(2 \pi R_{1} n_{1}+y_{1}\right)^{2}} \ldots e^{-t\left(2 \pi R_{d} n_{d}+y_{d}\right)^{2}} \\
& =-\frac{\alpha(D+d)}{\Gamma\left(\frac{D+d-2}{2}\right)} \int_{0}^{\infty} d t t^{\frac{D+d-4}{2}} e^{-t r^{2}} \prod_{i=1}^{d} e^{-t y_{i}^{2}} B_{i}\left(t, y_{i}\right), \\
& B_{i}\left(t, y_{i}\right)=\sum_{n_{i}=-\infty}^{\infty} e^{-t\left(2 \pi R_{i} n_{i}+y_{i}\right)^{2}}=e^{-t y_{i}^{2}} \theta\left(2 \mathrm{i} R_{i} y_{i} t, 4 \pi \mathrm{i} R_{i}^{2} t\right),
\end{aligned}
$$

where the sums in B_{i} 's were written by means of the Theta function.

Compactification and Dimension dynamics

For a point quark inside hadron of size R at a temperature T we have

$$
\begin{gathered}
\Delta \varphi=e \sum_{k, l, n, m} \delta\left(\tau_{k}\right) \delta\left(x_{l}\right) \delta\left(y_{n}\right) \delta\left(z_{m}\right), \\
\\
\varphi(0, \tau, x, y, z)=\sum_{k, l, n, m} \varphi\left(0, \tau_{k}, x_{l}, y_{n}, z_{m}\right) \\
\\
V(0, \tau, x, y, z)=-\alpha(4) \sum_{k, l, n, m=-\infty}^{\infty}\left((2 \pi k / T+\tau)^{2}\right. \\
\left.+\left(2 \pi R_{1} l+x\right)^{2}+\left(2 \pi R_{2} n+y\right)^{2}+\left(2 \pi R_{3} m+z\right)^{2}\right)^{-1} \\
=-\alpha(4) \int_{0}^{\infty} d t t B_{0}(t, \tau) B_{1}(t, x) B_{2}(t, y) B_{3}(t, z), \\
B_{1}(t, x)= \\
\sum_{n=-\infty}^{\infty} e^{-t\left(2 \pi R_{1} n+x\right)^{2}}=e^{-t x^{2}} \theta\left(2 \mathrm{i} R_{1} x t, 4 \pi \mathrm{i} R_{1}^{2} t\right), \ldots, R_{0}=1 / T,
\end{gathered}
$$

where we have written the sums by means of the Theta function.

Theta functions

Theta functions is the analytic function $\theta(z, \tau)$ in 2 variables defined by $\theta(z, \tau)=\sum_{n \in \mathbb{Z}} \exp \left[\mathrm{i} \pi\left(\tau n^{2}+2 n z\right)\right]=1+2 \sum_{n \geq 1} \exp \left(\mathrm{i} \pi \tau n^{2}\right) \cos (2 \pi n z)$, where $z \in \mathbb{C}$ and $\tau \in \mathbb{H}$, the upper half plane $\operatorname{Im} \tau>0$. The series converges absolutely and uniformly on compact sets.

Integrals

Let us calculate the following integral

$$
I(a)=\int_{0}^{\pi} \frac{d \vartheta}{a^{2}+1-2 a \cos \vartheta}=\frac{\pi}{\left|a^{2}-1\right|}=\left\{\begin{array}{ll}
\pi / a^{2}, & a^{2} \gg 1 \\
\pi, & a^{2} \ll 1
\end{array} .\right.
$$

Obviously, $I(1)=\infty$, but

$$
\begin{aligned}
& I(1)=\frac{1}{2} \int_{0}^{\pi} \frac{d \vartheta}{1-\cos (\vartheta)}=\frac{1}{4} \int_{0}^{\pi} \frac{d \vartheta}{\sin ^{2} \frac{\vartheta}{2}}=\frac{1}{2} \int_{0}^{1} \frac{d x}{\left(1-x^{2}\right)^{3 / 2}} \\
& =\frac{1}{4} \int_{0}^{1} \frac{d y}{y^{1 / 2}(1-y)^{3 / 2}}=B(1 / 2,-1 / 2)=\frac{1}{4} \frac{\Gamma(1 / 2) \Gamma(-1 / 2)}{\Gamma(0)}=0, ?! \\
& B(\alpha, \beta)=\int_{0}^{1} d x x^{\alpha-1}(1-x)^{\beta-1}=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}, \text { Real } \alpha, \beta>0 .
\end{aligned}
$$

Integrals

In our case, $a=\exp (r / R)>1$ and the corresponding integral is

$$
\begin{aligned}
& I=\frac{1}{a} \int \frac{d \theta}{b+2 \cos \theta}=\frac{1}{\mathrm{i} a} \int \frac{d z}{z^{2}+b z+1} \\
& =I(z, a)=\frac{1}{\mathrm{i} a(a-1 / a)} \ln \frac{z+a}{z+1 / a}, \\
& I(a)=I(-1, a)-I(1, a)=\frac{1}{\operatorname{ia(a-1/a)}} \ln \frac{(-1+a)(1+1 / a)}{(-1+1 / a)(1+a)}=\frac{\pi}{a^{2}-1}, \\
& b=a+1 / a, z=e^{\mathrm{i} \theta} .
\end{aligned}
$$

Now,

$$
\begin{aligned}
& I=\int_{0}^{2 \pi} \frac{d \vartheta}{a^{2}+1-2 a \cos (\vartheta)}=I(a)+I(-a)=\frac{2 \pi}{\left|a^{2}-1\right|}=\frac{\pi \exp (-r / R)}{\sinh (r / R)}, \\
& \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{d \vartheta}{\cosh (r / R)-\cos (\vartheta)}=\frac{2 a}{a^{2}-1}=\frac{1}{\sinh (r / R)}, a=\exp (r / R) .
\end{aligned}
$$

Bibliography

- Martin Bureš, Nugzar Makhaldiani, "Space Dimension Dynamics and Modified Coulomb Potential of Quarks - Dubna Potentials", Physics of Elementary Particles and Atomic Nuclei, Letters, 2019, Vol. 16, issue 6.
- Bureš M. and Siegl P., "Hydrogen atom in space with a compactified extra dimension and potential defined by Gauss law" Annals of Physics 354 (2015) 316-327
- Eichten E. Gottfried K. Kinoshita T. Lane K. D. and Tung-Mow Yan "Charmonium: The Model" Phys. Rev. D 17 (1978) 3090 [Erratum: Phys. Rev. D21, 313 (1980)]

Bibliography

- Makhaldiani Nugzar, "Phase transitions in the extended particle systems, Hagedorn temperature and fractal dimension of space, as a confinement phase transition order parameter" EPJ Web of Conferences 204 (2019) 06012.
- Makhaldiani N. "New Hamiltonization of the Schrödinger Equation by Corresponding Nonlinear Equation for the Potential" JINR Communications E2-2000-179 Dubna (2000)
- Shirkov Shirkov D.V. " Dreamland with classic Higgs field, dimensional reduction and all that" Proc. of the Steklov Inst. of Math. 272 (2011) 216-222.

