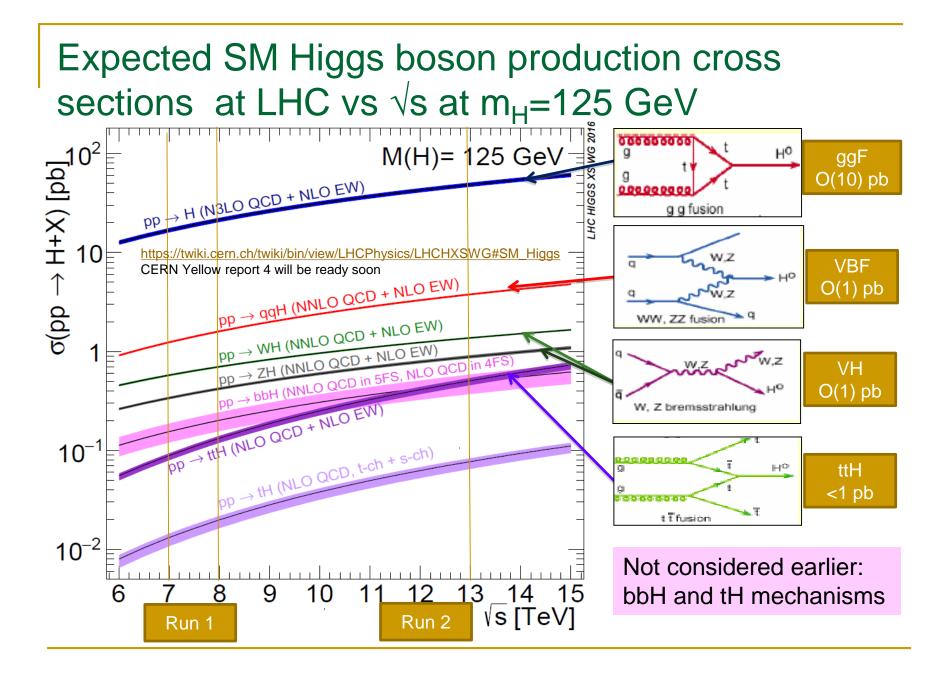

Review of Higgs Results from the ATLAS experiment

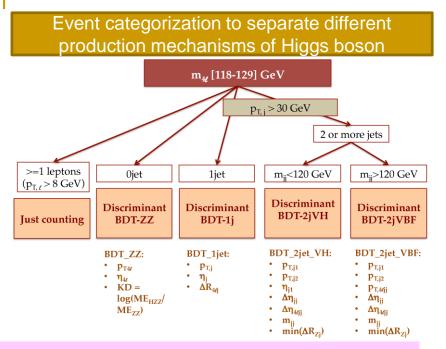

I.I. Tsukerman (ITEP, Moscow, Russia) for the ATLAS Collaboration, 05.10.2016

Content

- Standard Model (SM) Higgs boson (H) decay channels
- ATLAS SM H results at 13 TeV LHC
 - H \rightarrow ZZ \rightarrow 4/ and H \rightarrow $\gamma\gamma$ decay modes and their combination
 - (VH, H \rightarrow bb), ttH and H \rightarrow µµ production and decay modes
- Search for high-mass H-like resonances at 13 TeV
 - Bosonic H \rightarrow ZZ, H \rightarrow WW and H $\rightarrow\gamma\gamma$ decay modes
 - Exotic H/A $\rightarrow \tau\tau$ decay mode
- Search for charged Higgs bosons at 13 TeV
- Pair production of Higgs bosons at 13 TeV
- Brief summary of SM H results at 7 and 8 TeV LHC

Conclusion

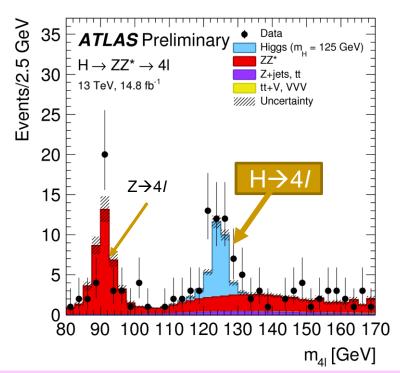
Expected H branching ratios at m_H=125.09 GeV


Numbers are taken from JHEP08 (2016) 045; small update is presented in https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CERNYellowReportPageAt13TeV

Decay mode	BR, %	Observability in the experiment	Event rates*
H→bb	57.5 ± 1.9	Mainly in VH and ttH production	>10000/15 fb ⁻¹
H→WW*	21.6 ± 0.9	Leptonic decays of both W	≈7000 /15 fb ⁻¹
H→gg	8.56 ± 0.86	no good experimental signature	
Η→ττ	6.30 ± 0.36	Mainly in VBF production	≈4000 /15 fb ⁻¹
Н→сс	2.90 ± 0.35	No good experimental signature	
H→ZZ*	2.67± 0.11	Leptonic decays of both Z	≈100 /15 fb ⁻¹
Η→γγ	0.228 ± 0.011	Big continuum background	≈ 2000 /15 fb ⁻¹
Η→Ζγ	0.155 ± 0.014	Leptonic decay of Z	≈100/15 fb ⁻¹
Η→μμ	0.022 ± 0.001	Big continuum background	≈200/15 fb ⁻¹

estimated number of events, collected at 13 TeV pp collisions (for about15 fb⁻¹ data sample) assuming 100% detection efficiency

$H \rightarrow ZZ^* \rightarrow 4/$ at 13 TeV

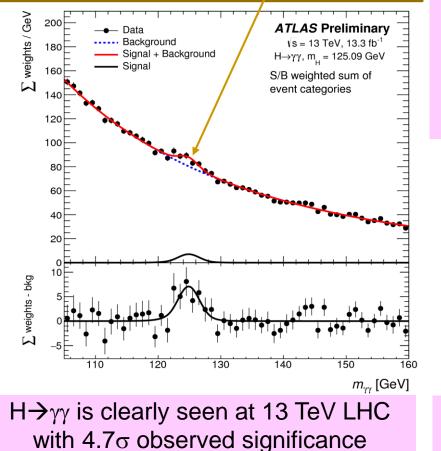

ATLAS-CONF-2016-079

Total H cross section measurement

 σ_{H} (meas)=81⁺¹⁸₋₁₆ pb in agreement within 1.6 σ with the SM value σ_{H} (SM)=55.5^{+3.8}_{-4.4} pb

It is based on fiducial cross section measurement (see backup slide)

44 events observed in 118-129 GeV range


Expected background (BKG): 9.7±0.8 events

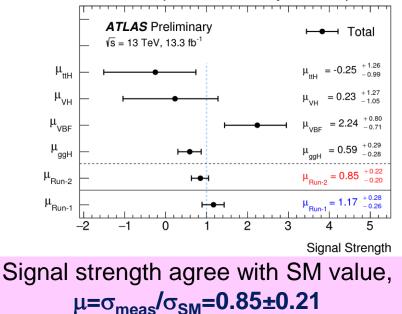
Expected signal at 125 GeV: 22.3 events

SM H is rediscovered at 13TeV LHC, cross sections are measured

$H \rightarrow \gamma \gamma$ at 13 TeV

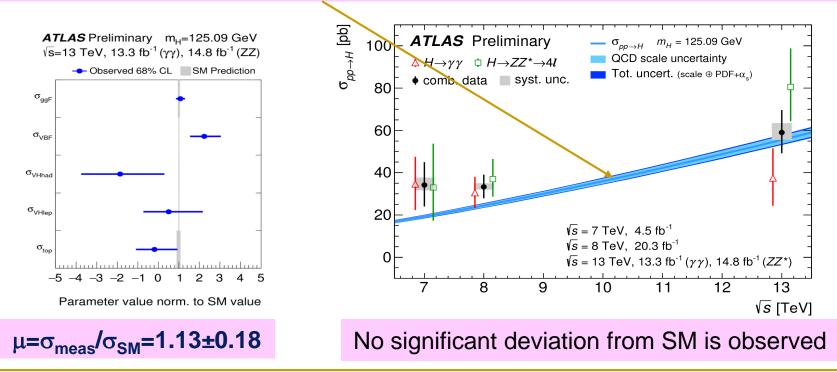
Exclusive categories that are optimized for the best separation of H production processes:13 categories which correspond to VBF-, ttH- and VH-enriched events; spectrum after weighting

Cross section measurements:


ATLAS-CONF-2016-067

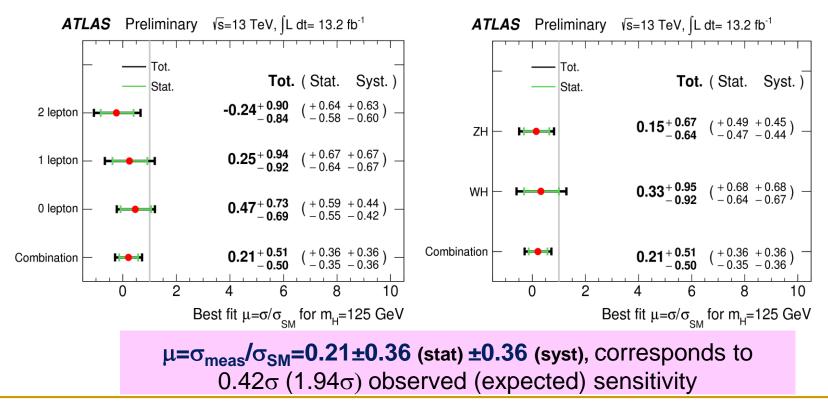
σ_H(fid)=43.2±14.9(stat)±4.9(syst) fb
in agreement with the SM value

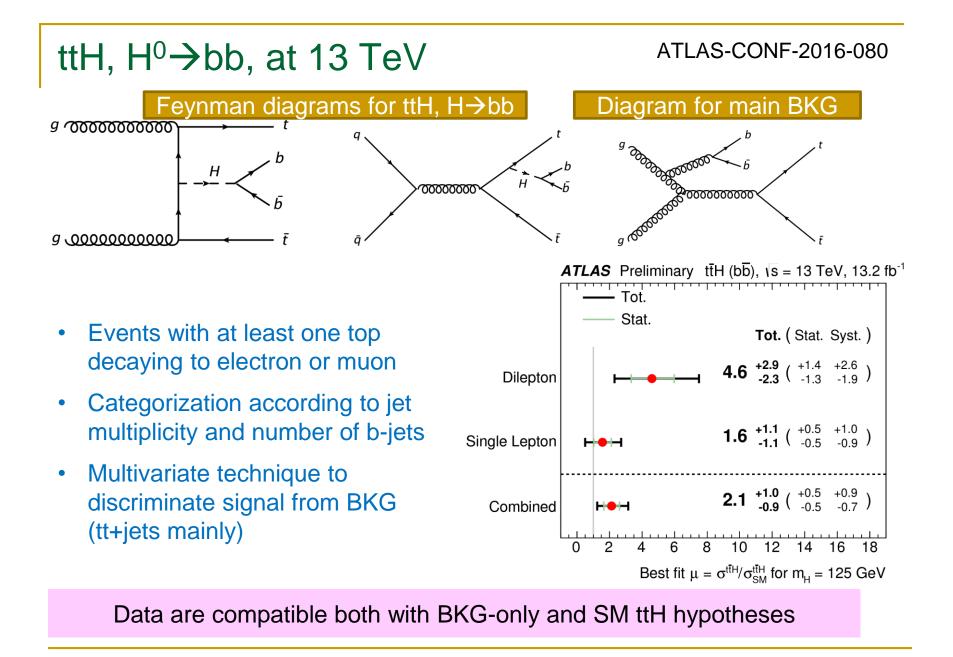
 $\sigma_{\rm H}({\rm SM})$ =62.8^{+3.4}-4.4 fb

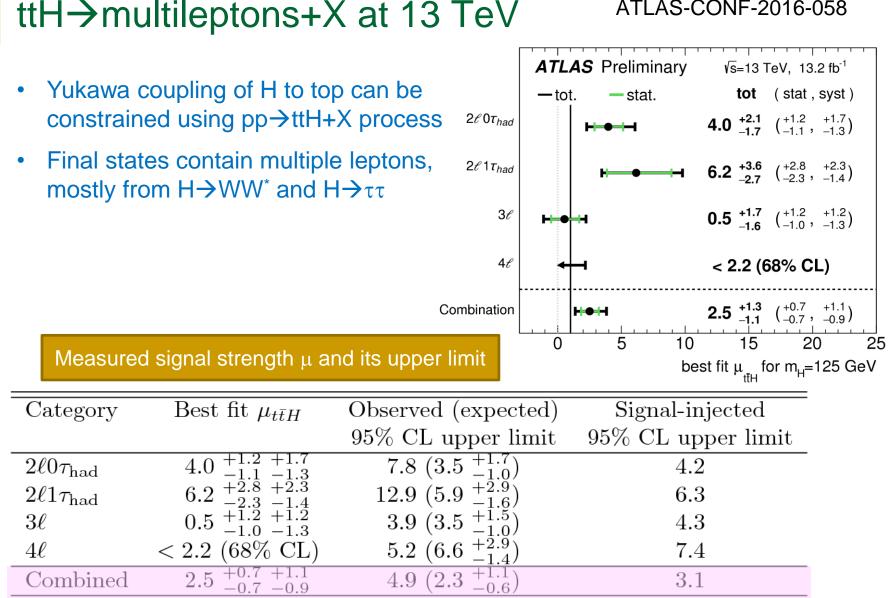

Fid.vol.: isolated photons with high p_T

Differential cross sections also measured (see backup slide)

Combined H⁰ \rightarrow 4*I*, $\gamma\gamma$ at 13 TeV

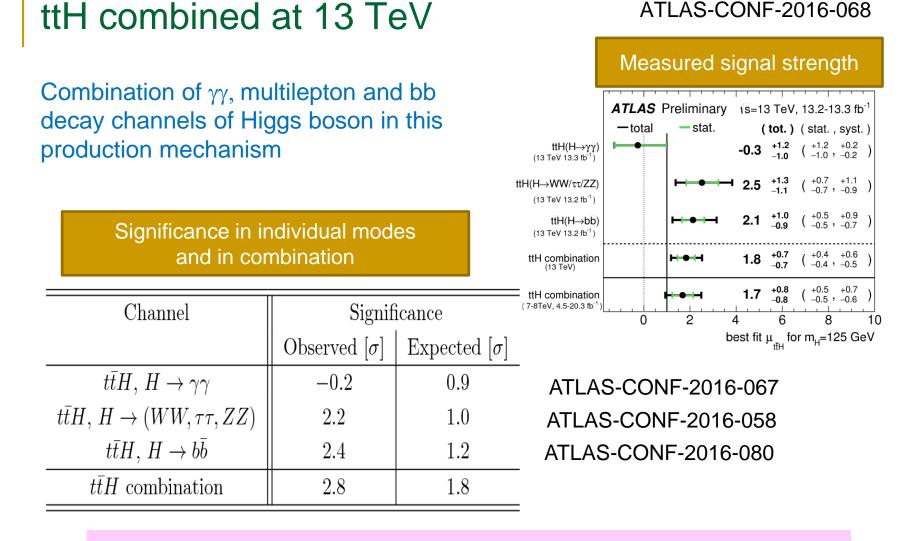

- H production is seen with local significance 10σ (8.6 σ expected)
- Evidence for VBF H production is at about 4σ level (1.9 σ expected)
- $\sigma_H \times BR$ are measured for |y| < 2.5 for ggF, VBF, VH and ttH (see backup)
- $\sigma(pp \rightarrow H + X) = 59.0^{+9.7}_{-9.2}$ (stat) $^{+4.4}_{-3.5}$ (syst) pb is determined from fiducial measurements and combined with older results at 7 and 8 TeV




VH, H→bb at 13 TeV

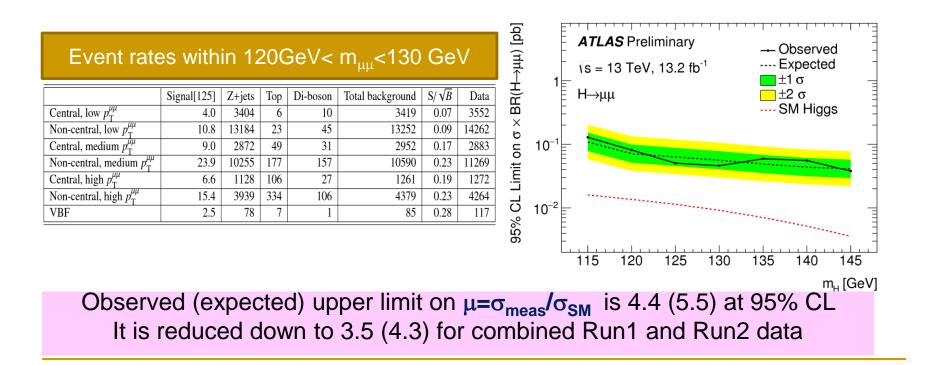
ATLAS-CONF-2016-091

- Separate final states with 0 ($Z \rightarrow vv$), 1 ($W \rightarrow h$) and 2 ($Z \rightarrow II$) leptons
- Signatures: two b-jets and tight lepton(s) or large E_T^{miss}
- Dozen of variables in multivariate analysis to discriminate signal from BKG
- Successful validation of the analysis procedure on (W/Z)Z with $Z \rightarrow bb$



03.10.2016

ATLAS-CONF-2016-058



 $\mu = \sigma_{meas} / \sigma_{SM} = 1.8 \pm 0.7$, 2.8 σ (1.8 σ) observed (expected) significance.

$H \rightarrow \mu\mu$ at 13 TeV

ATLAS-CONF-2016-041

- Clean signature to measure H coupling to second-generation fermions
- Event categorization to increase signal sensitivity: seven categories with different S/B ratios based on muon η , $p_T^{\mu\mu}$, and VBF di-jet signature
- Multivariate analysis with many kinematic variables

Non-SM Higgs bosons

- SM-like Higgs boson (h) with $m_h=125$ GeV was discovered four years ago Great success of the SM, however it does not explain many things.
- Many extensions of the SM proposed by theorists were rejected after this discovery, but some of them are OK.

10⁴

 H^+

Charged (*)

The simplest "toy" model is Narrow Width Approximation (NWA) where additional high-mass Higgs boson (H) behaves as SM Higgs boson h, except the width is fixed to be equal to the h(125) width. Very easy to produce MC samples, no

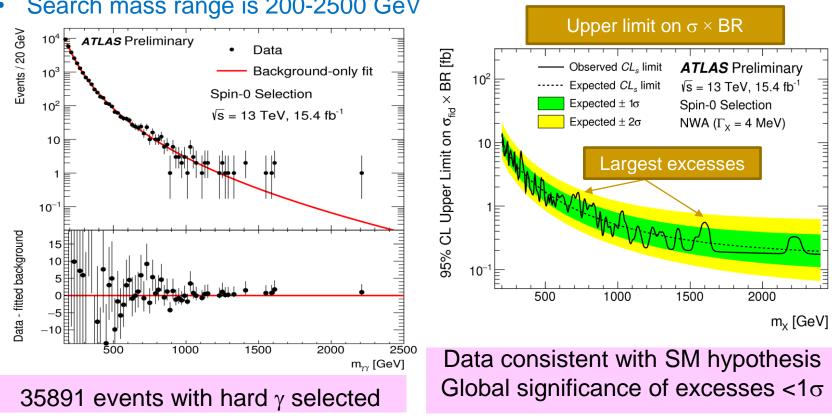
interference with background processes

Another option is additional Higgs doublet:

5 Higgs bosons

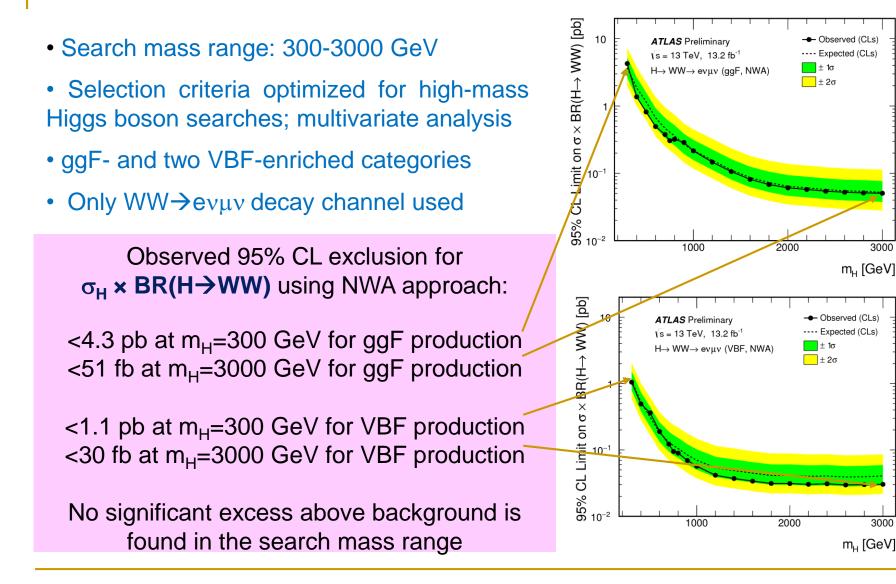
•

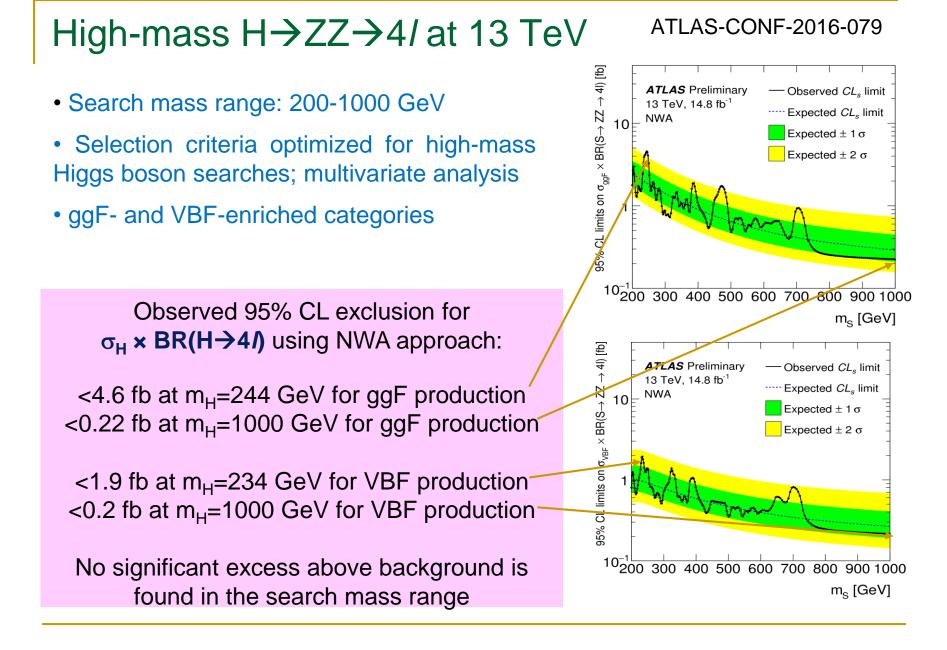
 $\begin{bmatrix} qd \\ 10^3 \\ (X+H \uparrow dd)^2 \\ 10^2 \end{bmatrix}$ √s= 13 TeV (NNLO+NNLL QCD) (NNLO QCD) 10- 10^{-2} 10⁻³ 1000 2000 M_H [GeV] 20 30 200 10 100 At very high m_{H} VBF mechanism becomes dominant for NWA H!


* assuming CP conservation

 σ_{μ} in NWA vs its mass

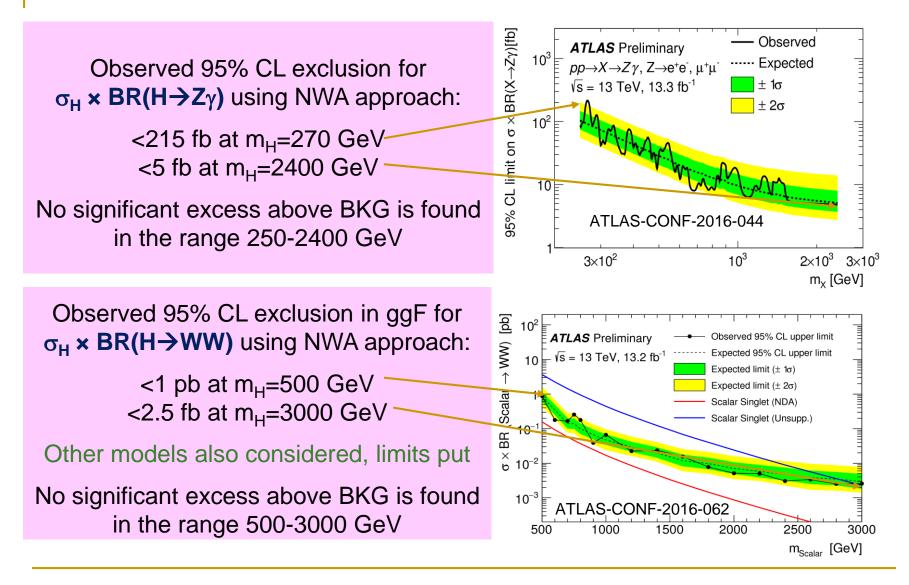
H-

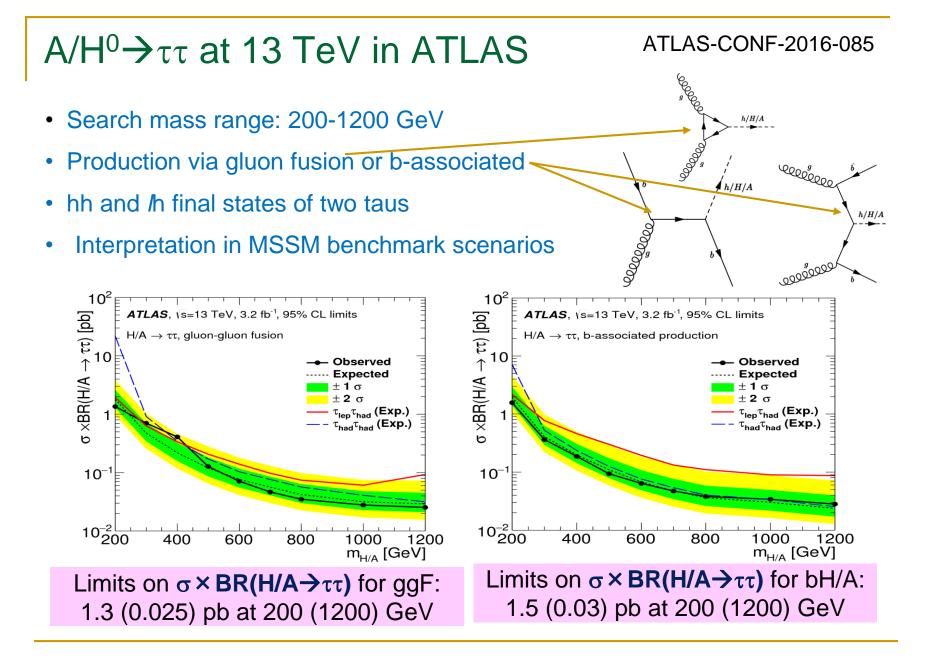

High-mass $H \rightarrow \gamma \gamma$ at 13 TeV ATLAS-CONF-2016-059


- Excess near 750 GeV seen in $\gamma\gamma$ 2015 data (3.2 fb⁻¹) both by ATLAS and CMS
- In ATLAS, deviation from the SM was at 3.4 σ level at m_H=730 GeV
- New analysis uses five times larger data sample, mostly taken in 2016


Search mass range is 200-2500 GeV ۲

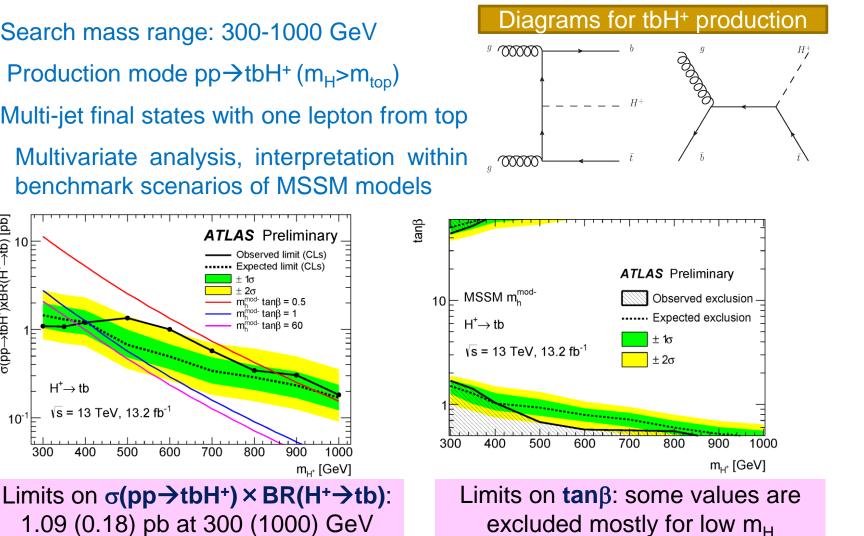
High-mass H→WW→IvIv at 13 TeV ATLAS-CONF-2016-074





High-mass $H \rightarrow ZZ \rightarrow (I/vv, I/qq, vvqq)$ at 13 TeV

High-mass $H \rightarrow Z\gamma$ and $H \rightarrow WW \rightarrow Nqq$ at 13 TeV



$H^+ \rightarrow tb$ at 13 TeV in ATLAS

- Search mass range: 300-1000 GeV
- Production mode $pp \rightarrow tbH^+ (m_H > m_{top})$
- Multi-jet final states with one lepton from top
- Multivariate analysis, interpretation within benchmark scenarios of MSSM models

ATLAS-CONF-2016-089

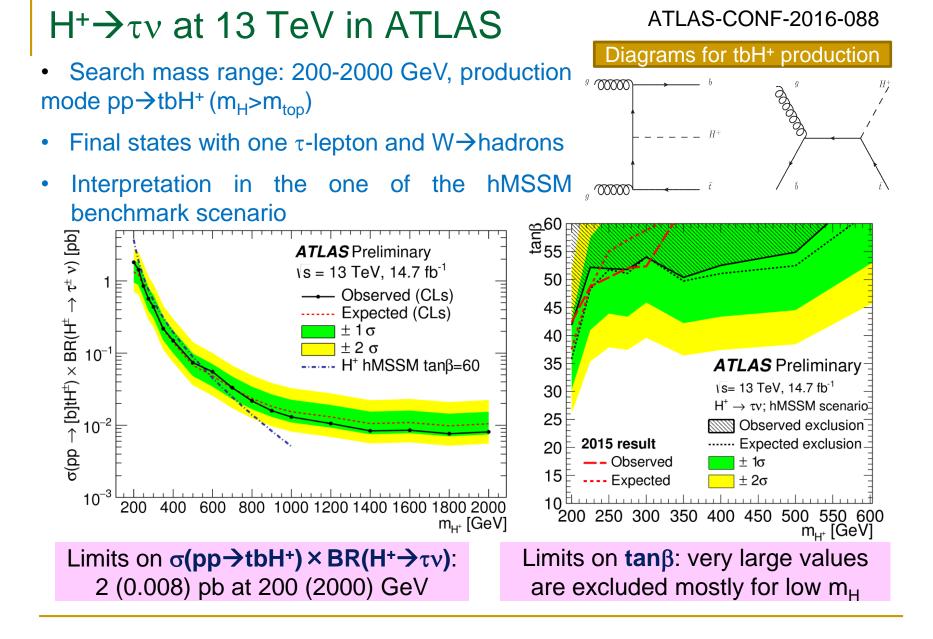
 10^{-1}

300

σ(pp→tbH⁺)xBR(H⁺→tb) [pb]

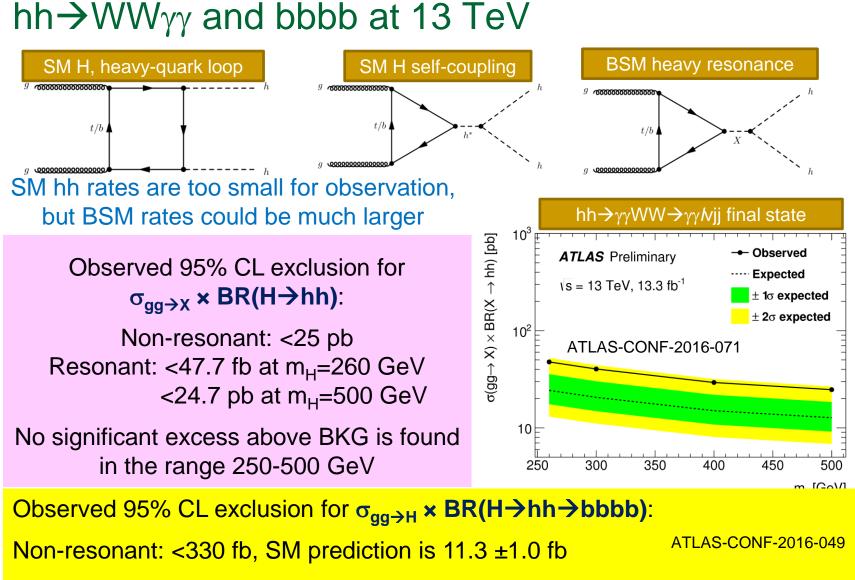
10

 $H^+ \rightarrow tb$


400

 \sqrt{s} = 13 TeV, 13.2 fb⁻¹

500


600

700

Brief summary of H results at 7-8 TeV

Parameter	Value	Reference	Comment		
Mass	125.36±0.41 GeV	PR D90 (2014) 052004	125.09±0.24 GeV with CMS		
Signal strength vs SM	1.18±0.15	EPJC76 (2016) 6	1.09±0.10 with CMS		
in H→γγ mode	1.17 ^{+0.28} -0.26	EPJC76 (2016) 6	5.2σ (discovery)		
in H→4/ mode	1.46 ^{+0.40} -0.34	EPJC76 (2016) 6	8.1σ (discovery)		
in H→WW [*] →IvIv	1.18 ^{+0.24} -0.21	EPJC76 (2016) 6	6.5σ (discovery)		
in H→ττ mode	1.44 ^{+0.42} -0.37	EPJC76 (2016) 6	4.5σ (evidence)		
in H→bb mode	0.63 ^{+0.39} -0.37	EPJC76 (2016) 6	1.4 σ (no evidence)		
in ggF production	1.23 ^{+0.23} -0.20	EPJC76 (2016) 6	$1.03^{+0.17}_{-0.15}$ with CMS		
in VBF production	1.23±0.32	EPJC76 (2016) 6	1.18 ^{+0.25} -0.23 with CMS		
in VH production	0.80±0.36	EPJC76 (2016) 6	0.84 ^{+0.40} -0.38 with CMS		
in ttH production	1.81±0.80	EPJC76 (2016) 6	2.3 ^{+0.7} -0.6 with CMS		
Spin/parity	0+	EPJC 75 (2015) 476	4 <i>I</i> , <i>NN</i> , γγ modes		
Width	<22.7 MeV (95% CL)	EPJC 75 (2015) 335	Off-shell H→WW/ZZ		
BR(H→invisible)	<0.28 (95% CL)	JHEP 01 (2016) 172	WIMP searches		
No significant deviation from SM is observed					

No significant excess above BKG is found in the range 300-3000 GeV

Conclusion

With 7 and 8 TeV LHC data ATLAS measured properties of the Higgs boson such as its couplings, mass, spin and parity. No deviation from the SM is found.

Using 13-15 fb⁻¹ of 13 TeV LHC data, ATLAS obtained preliminary results reconfirming Higgs boson discovery in 4*I* and $\gamma\gamma$ modes.

With the same dataset, ATLAS performed searches for neutral and charge Higgs bosons predicted by some extensions of SM. No evidence for new physics was found yet. Limits on H boson production cross sections in different models were put.

ATLAS continue to study properties of the SM-like H boson improving precision of their measurements and to search for exotic Higgs bosons with new 13-14 TeV data.

Backup slides

$H \rightarrow ZZ^* \rightarrow 4/$ at 13 TeV: details	ATLAS-CONF-2016-079
$H \rightarrow \gamma \gamma$ at 13 TeV: details	ATLAS-CONF-2016-067
$H \rightarrow ZZ^* \rightarrow 4I$ and $\gamma\gamma$ at 13 TeV: details	ATLAS-CONF-2016-081
$H \rightarrow \gamma \gamma$ high-mass at 13 TeV: details	ATLAS-CONF-2016-059
$H \rightarrow WW \rightarrow k/k$ high-mass at 13 TeV: details	ATLAS-CONF-2016-074
Higgs boson mass ATLAS+CMS at 7 and 8 Te	/ PRL 114 (2015) 191803
Higgs boson couplings ATLAS+CMS at 7/8 Te\	/ JHEP08 (2016) 045
Higgs boson spin/parity at 8 TeV	EPJC 75 (2015) 476
Off-shell H \rightarrow WW and H \rightarrow ZZ (width) at 8 TeV	EPJC 75 (2015) 335
$H \rightarrow 4I$ and $H \rightarrow \gamma \gamma$ diff. cross sections at 8 TeV	PRL 115 (2015) 091801
VBF H \rightarrow invisible at 8 TeV	JHEP 01 (2016) 172
H/Z decays to J/ $\psi\gamma$ and Y γ at 8 TeV	PRL 114 (2015) 121801
Pair production of Higgs bosons at 8 TeV	PRD92 (2015) 092004
Higgs boson perspectives	a few notes
VBF+γ H→bb at 13 TeV	ATLAS-CONF-2016-059

Higgs results not covered in these slides

- Most publications/notes issued before 2016
- About ten publications based on first 13 TeV dataset (2015 year data only)
- VBF H→bb at 8 TeV arXiv:1606.02181, submitted to JHEP
- Lepton-flavour-violating decays of the Higgs arXiv:1604.07730, submitted to EPJC
- ttH, H→bb at 8 TeV
- $gg \rightarrow H \rightarrow WW^*$ cross sections at 8 TeV
- CP test in VBF H production at 8 TeV
- H→tb at 8 TeV

JHEP05 (2016) 160

JHEP08 (2016) 104

arXiv:1602.04516, submitted to EPJC

JHEP03 (2016) 127

$H \rightarrow ZZ^* \rightarrow 4/$ at 13 TeV

ATLAS-CONF-2016-079

Cuts for fiducial cross section measurement				
	Lepton definition			
Muons: $p_{\rm T} > 5 \text{ GeV}$	$ \eta < 2.7$ Electrons: $p_{\rm T} > 7 {\rm GeV}, \eta < 2.47$			
	Pairing			
Leading pair:	SFOS lepton pair with smallest $ m_Z - m_{\ell\ell} $			
Sub-leading pair:	Remaining SFOS lepton pair with smallest $ m_Z - m_{\ell\ell} $			
	Event selection			
Lepton kinematics:	Leading leptons $p_{\rm T} > 20, 15, 10 \text{ GeV}$			
Mass requirements:	$50 < m_{12} < 106 \text{ GeV}; 12 < m_{34} < 115 \text{ GeV}$			
Lepton separation: $\Delta R(\ell_i, \ell_j) > 0.1(0.2)$ for same(opposite)-flavour leptons				
J/ψ veto: $m(\ell_i, \ell_j) > 5$ GeV for all SFOS lepton pairs				
Mass window:	$115 < m_{4\ell} < 130 \text{ GeV}$			

Measured fiducial cross sections

measured $\sigma_{\rm fid}$ [fb]

 $1.28 \ ^{+0.48}_{-0.40}$

 $0.81 \ ^{+0.51}_{-0.38}$

 $1.29 \ ^{+0.58}_{-0.46}$

 $1.10 \ ^{+0.49}_{-0.40}$

Acceptance factors \mathcal{A} [%]								
Decay		Produ	uction r	node				
Channel	ggF	ggF VBF $WH ZH t\bar{t}H$						
4μ	50.9	55.0	43.8	46.5	53.6			
4e	39.6	43.9	34.4	36.0	44.6			
$2\mu 2e$	40.0	42.9	34.0	35.5	42.4			
$2e2\mu$	45.9	48.6	38.0	40.4	47.2			

These factors are related to fiducial region on the left

Correction factors C [%]					
Decay		Produ	uction r	node	
Channel	ggF	VBF	WH	ZH	$t\bar{t}H$
4μ	62.6	64.2	60.8	60.5	41.8
4e	42.1	43.2	43.0	42.7	38.7
$2\mu 2e$	46.9	50.9	49.1	48.6	41.7
$2e2\mu$	53.1	54.7	51.8	50.2	36.7

These factors are related to detector efficiency and resolution

Results agree with SM predictions

Final state

 4μ

4e

 $2\mu 2e$

 $2e2\mu$

 $\sigma_{\rm fid,SM}$ [fb]

 $0.93 \ ^{+0.06}_{-0.08}$

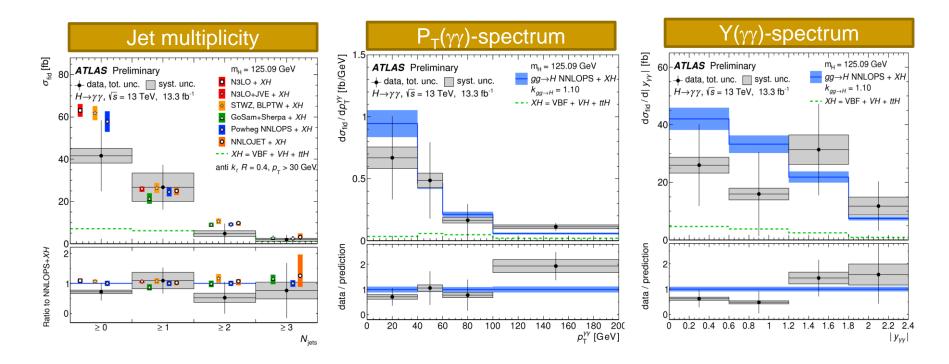
 $0.73 \ _{-0.06}^{+0.05}$

 $0.67 \ ^{+0.04}_{-0.04}$

 $0.76 \ _{-0.06}^{+0.05}$

$H \rightarrow \gamma \gamma$ at 13 TeV

ATLAS-CONF-2016-067


Cuts for fiducial cross section measurement

	diphoton baseline	VBF enhanced	single lepton
Photons	$ \eta $	< 1.37 or $1.52 < \eta < 2.37$	
	$p_{\rm T}^{\gamma_1} >$	$0.35 m_{\gamma\gamma}$ and $p_{\rm T}^{\gamma_2} > 0.25 m_{\gamma\gamma}$	Ŷ
Jets	-	$p_{\rm T} > 30 {\rm GeV}$, $ y < 4.4$	-
	-	$m_{jj} > 400 \text{GeV}, \Delta y_{jj} > 2.8$	-
	-	$ \Delta\phi_{\gamma\gamma,jj} > 2.6$	-
Leptons	-	_	$p_{\rm T} > 15 {\rm GeV}$
			$ \eta < 2.47$

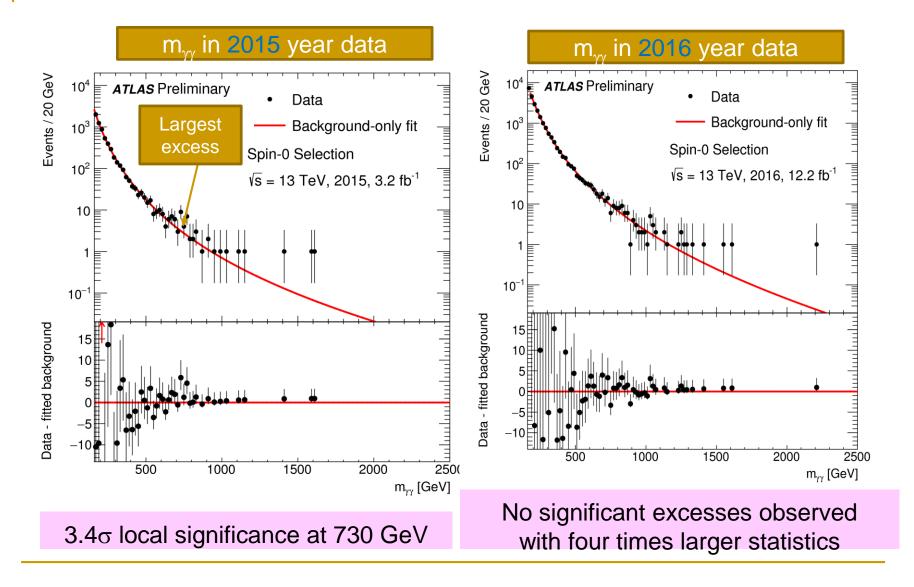
Measured fiducial cross sections

Fiducial region	Measured cross section (fb)	SM prediction (fb)
Baseline	$43.2 \pm 14.9 (\text{stat.}) \pm 4.9 (\text{syst.})$	$62.8^{+3.4}_{-4.4}$ [N ³ LO + XH]
VBF-enhanced	$4.0 \pm 1.4 (\text{stat.}) \pm 0.7 (\text{syst.})$	2.04 ± 0.13 [NNLOPS + XH]
single lepton	$1.5 \pm 0.8 (\text{stat.}) \pm 0.2 (\text{syst.})$	0.56 ± 0.03 [NNLOPS + XH]

Results agree with SM predictions

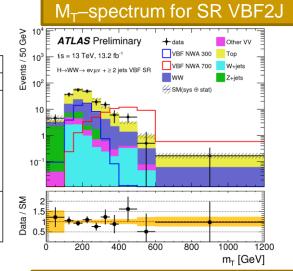
Combined H⁰ \rightarrow 4*I*, $\gamma\gamma$ at 13 TeV

Best fit	values of $\sigma \times Bl$	R for specific	channels	_	Best	fit values of σ_{H} a	assuming SM BR
		$H \rightarrow ZZ^*$	$H \to \gamma \gamma$	_ :		Best fit value (pb)	SM prediction (pb)
ggF	Best fit value (pb)	$1.58 {}^{+0.46}_{-0.39}$	$0.063^{+0.030}_{-0.029}$	-		(1)	· · · · · ·
	SM prediction (pb)	1.18 ± 0.07	0.101 ± 0.006	_	$\sigma_{ m ggF}$	$47.8^{+9.8}_{-9.4}$	44.5 ± 2.3
VBF	Best fit value (fb)	350^{+260}_{-200}	18^{+6}_{-6}	_			
	SM prediction (fb)	93.0 ± 2.8	8.00 ± 0.29		$\sigma_{\mathtt{VBF}}$	$7.9^{+2.8}_{-2.4}$	3.52 ± 0.07
VHhad	Best fit value (fb)	fixed to SM	$-2.5^{+6.8}_{-5.8}$	_			
	SM prediction (fb)	36.0 ± 1.2	3.09 ± 0.12		$\sigma_{\tt VHhad}$	$-2.5^{+2.9}_{-2.6}$	1.36 ± 0.03
VHlep	Best fit value (fb)	fixed to SM	$1.0^{+2.5}_{-1.9}$	_		1.05	
	SM prediction (fb)	17.0 ± 0.5	1.46 ± 0.05		$\sigma_{\tt VHlep}$	$0.32^{+1.07}_{-0.79}$	0.64 ± 0.02
top	Best fit value (fb)	fixed to SM	$-0.3^{+1.6}_{-1.2}$	_			
	SM prediction (fb)	15.9 ± 1.5	1.36 ± 0.13		$\sigma_{ t top}$	$-0.11^{+0.67}_{-0.54}$	0.60 ± 0.06
	Best fit value (fb) SM prediction (fb) Best fit value (fb)	17.0 ± 0.5 fixed to SM	$\frac{1.46 \pm 0.05}{-0.3^{+1.6}_{-1.2}}$	_	-	$0.32^{+1.07}_{-0.79}$ $-0.11^{+0.67}_{-0.54}$	


σ (pp \rightarrow H +X) measured using $\gamma\gamma$ and 4*I* decays and their combination

Decay channel	Total cross section $(pp \to H + X)$					
	$\sqrt{s} = 7 \mathrm{TeV}$	$\sqrt{s} = 8 \mathrm{TeV}$	$\sqrt{s} = 13 \mathrm{TeV}$			
$H \to \gamma \gamma$	$35^{+13}_{-12} \text{ pb}$	$30.5^{+7.5}_{-7.4} \text{ pb}$	$37^{+14}_{-13} \text{ pb}$			
$H \to ZZ^* \to 4\ell$	$33^{+21}_{-16} { m ~pb}$	$37^{+9}_{-8} { m ~pb}$	$81^{+18}_{-16} { m ~pb}$			
Combination	34 ± 10 (stat.) $^{+4}_{-2}$ (syst.) pb	$33.3^{+5.5}_{-5.3}$ (stat.) $^{+1.7}_{-1.3}$ (syst.) pb	$59.0^{+9.7}_{-9.2}$ (stat.) $^{+4.4}_{-3.5}$ (syst.) pb			
SM predictions [7]	$19.2\pm0.9~\rm{pb}$	$24.5\pm1.1~\rm{pb}$	$55.5^{+2.4}_{-3.4} { m ~pb}$			

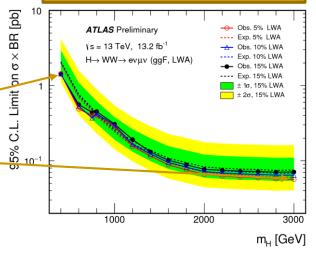
No significant deviation from SM is observed


High-mass $H \rightarrow \gamma \gamma$ at 13 TeV

ATLAS-CONF-2016-059

High-mass H \rightarrow WW \rightarrow *k*/*k* at 13 TeV ^{ATLAS-CONF-2016-074}

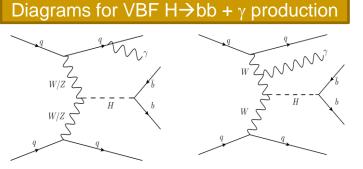
Selection criteria for signal regions (SR) \overline{SR}_{ggF} SR_{VBF2J} SR_{VBF1J} Preselection cuts: $p_{\rm T}^{\rm lead} > 25 \,{\rm GeV}, p_{\rm T}^{\rm sublead} > 15 \,{\rm GeV}, 3rd$ lepton veto, $m_{\ell\ell} > 10 \,{\rm GeV}$ $N_{b\text{-iet}} = 0$ $|\Delta \eta_{\ell\ell}| < 1.8$ $m_{\ell\ell} > 55 \,\mathrm{GeV}$ $p_{\rm T}^{\rm lead} > 45 \,{\rm GeV}$ $p_{\rm T}^{\rm sublead} > 30 \,{\rm GeV}$ $\max(m_{\rm T}^W) > 50 \,{\rm GeV}$ Inclusive in N_{iet} but $N_{\rm iet} = 1$ $N_{\text{iet}} \geq 2$ $|\eta_i| > 2.4$ $m_{ii} > 500 \, {\rm GeV}$ excluding VBF1J and VBF2J phase space $\min(|\Delta \eta_{i\ell}|) > 1.75$ $|\Delta y_{ij}| > 4$

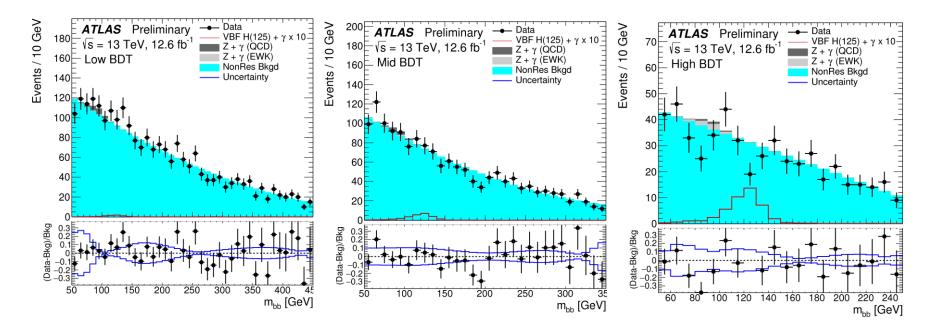

LWA=NWA but H width is taken to be "large"; here 5-15% from SM width at given m_H

Observed 95% CL exclusion for $\sigma_H \times$ BR(H \rightarrow WW) in ggF using 15% LWA approach:

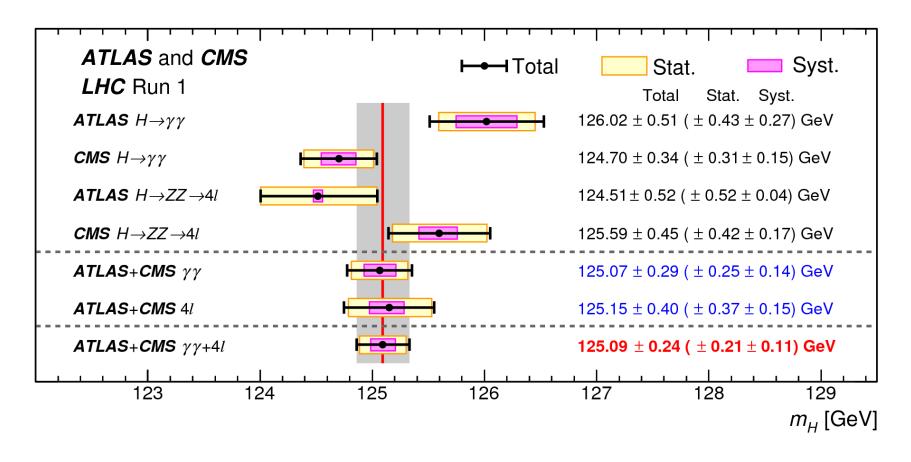
<1.4 pb at m_H=400 GeV <71 fb at m_H=3000 GeV

No significant excess above background is found in the search mass range


Exclusion for ggF using LWA



VBF+ γ H \rightarrow bb at 13 TeV


ATLAS-CONF-2016-063

Result	$H(\rightarrow b\bar{b}) + \gamma jj$	$Z(\to b\bar{b}) + \gamma jj$
Expected significance	0.4	1.3
Expected p -value	0.4	0.1
Observed p -value	0.9	0.4
Expected limit	$6.0 \begin{array}{c} +2.3 \\ -1.7 \end{array}$	$1.8 \ {}^{+0.7}_{-0.5}$
Observed limit	4.0	2.0
Observed signal strength μ	$-3.9 \ {}^{+2.8}_{-2.7}$	0.3 ± 0.8

Higgs boson combination: measured mass ATLAS+CMS: PRL 114 (2015) 191803

 m_{H} =125.09±0.24 GeV, statistical error dominates

Higgs boson combination: measured couplings* ATLAS+CMS: JHEP08 (2016) 045

Decay channel	Signal strength ATLAS	Signal strength CMS	Signif. ATLAS	Signif. CMS
Η→ γγ	1.15 ^{+0.27} -0.25	1.12 ^{+0.25} -0.23	5.0	5.6
$H \rightarrow ZZ^* \rightarrow 4I$	1.51 ^{+0.39} -0.34	1.05 ^{+0.32} -0.27	6.6	7.0
H→ WW [∗]	1.23 ^{+0.23} -0.21	0.91 ^{+0.24} -0.21	6.8	4.8
$H \rightarrow \tau \tau$	1.41 ^{+0.40} -0.35	0.89 ^{+0.31} -0.28	4.4	3.4
H→ bb	0.62+0.37-0.36	0.81 ^{+0.45} -0.42	1.7	2.0
H→ μμ	-0.7 ± 3.6	0.8 ± 3.5		

^{* -} at mass 125.09 GeV

- Signal is clearly seen in four channels: ZZ^{*}, WW^{*}, γγ, ττ
- μ =1.09±0.10, statistical error and signal theoretical error dominate

Higgs boson: spin and parity

- Channels tested: $H \rightarrow ZZ^* \rightarrow 4I$, $H \rightarrow WW \rightarrow ev\mu v$, $H \rightarrow \gamma\gamma$
- Hypotheses tested: 0⁺ (main), BSM 0⁻, 0_h⁺, 2⁺ with universal and nonuniversal couplings to fermions and vector bosons
- Tensor structure of HVV interaction (0⁺) also started to be studied

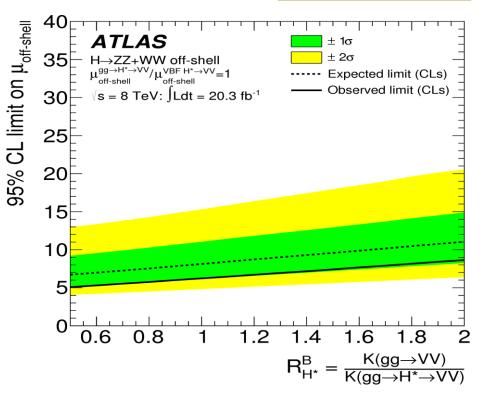
 0_h^+ model describes "the interaction of the Higgs boson with the SM vector bosons with higher-dimension operators. Phys. Rev. D **81** (2010) 075022, Phys. Rev. D **86** (2012) 095031

Tested Hypothesis	$p_{\exp,\mu=1}^{\text{alt}}$	$p_{\exp,\mu=\hat{\mu}}^{\mathrm{alt}}$	$p_{\rm obs}^{\rm SM}$	$p_{ m obs}^{ m alt}$	Obs. CL_s (%)
-0_{h}^{+}	$2.5 \cdot 10^{-2}$	$4.7 \cdot 10^{-3}$	0.85	$7.1 \cdot 10^{-5}$	$4.7 \cdot 10^{-2}$
0-	$1.8 \cdot 10^{-3}$	$1.3 \cdot 10^{-4}$	0.88	$< 3.1 \cdot 10^{-5}$	$< 2.6 \cdot 10^{-2}$
$2^+(\kappa_q = \kappa_g)$	$4.3 \cdot 10^{-3}$	$2.9\cdot10^{-4}$	0.61	$4.3 \cdot 10^{-5}$	$1.1 \cdot 10^{-2}$
$2^+(\kappa_q = 0; \ p_{\rm T} < 300 GeV)$	$< 3.1 \cdot 10^{-5}$	$< 3.1 \cdot 10^{-5}$	0.52	$< 3.1 \cdot 10^{-5}$	$< 6.5 \cdot 10^{-3}$
$2^+(\kappa_q = 0; \ p_{\rm T} < 125 GeV)$	$3.4\cdot10^{-3}$	$3.9\cdot10^{-4}$	0.71	$4.3 \cdot 10^{-5}$	$1.5 \cdot 10^{-2}$
$2^+(\kappa_q = 2\kappa_g; p_{\rm T} < 300 GeV)$	$< 3.1 \cdot 10^{-5}$	$< 3.1 \cdot 10^{-5}$	0.28	$< 3.1 \cdot 10^{-5}$	$< 4.3 \cdot 10^{-3}$
$2^+(\kappa_q = 2\kappa_g; \ p_{\rm T} < 125 GeV)$	$7.8 \cdot 10^{-3}$	$1.2 \cdot 10^{-3}$	0.80	$7.3 \cdot 10^{-5}$	$3.7 \cdot 10^{-2}$

- All alternative to 0⁺ hypotheses considered excluded at >99.9% CL
- 1+/1⁻ hypotheses (forbidden by Landau-Yang theorem for $H \rightarrow \gamma \gamma$) excluded earlier
- No deviations from SM are found in the first study of HVV tensor structure

03.10.2016

EPJC 75 (2015) 476

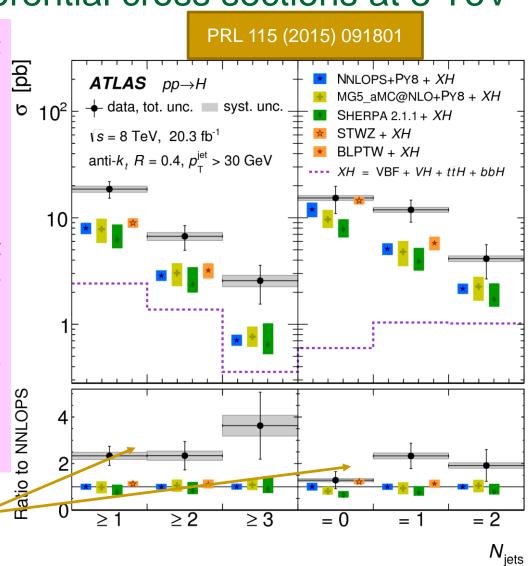

I. Tsukerman, NewTrends16

03.10.2016

EPJC 75 (2015) 335

Off-shell $H \rightarrow WW$ and $H \rightarrow ZZ$ at 8 TeV

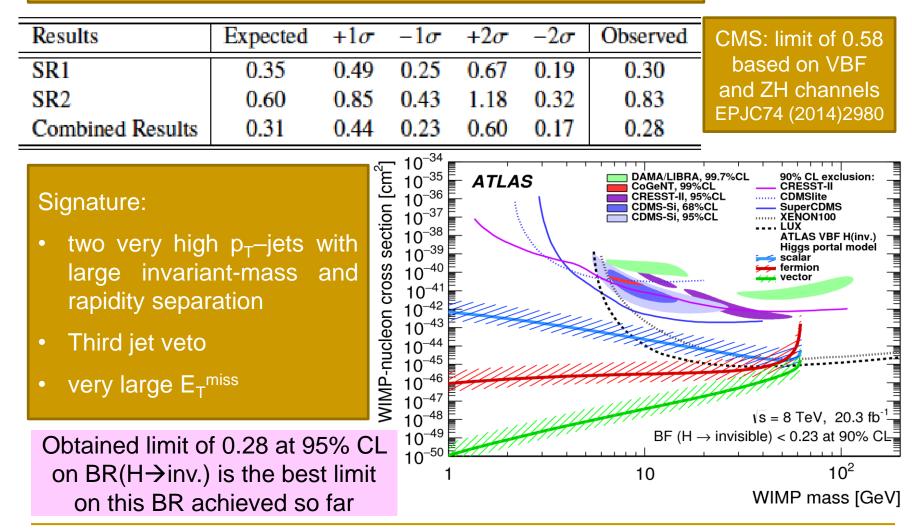
- H→ZZ→4/, H→ZZ→//vv and H→WW→evµv modes above 2m_v (Z,W) threshold
- 8 TeV data only
- Interference between H signal and gg→VV background
- Varying k-factor for gg→VV background from 0.5 to 2
- 95% CL on off-shell coupling is given



ATLAS: $\Gamma_{\rm H}$ <22.7 MeV at 95% CL CMS: $\Gamma_{\rm H}$ <23 MeV at 95% CL, ZZ only, but both 7 and 8 TeV data SM value: $\Gamma_{\rm H} \approx 4$ MeV

$H \rightarrow 4/$ and $H \rightarrow \gamma \gamma$ differential cross sections at 8 TeV

- Distributions on different • kinematical variables (Y_H, a p_T^H, N_{jets}, p_T(lead. jet)) were studied
- Total σ obtained
- Comparison with different event generators was performed
- P-values quantifying the ٠ compatibility of measured shapes and predictions range from 8% to 88%

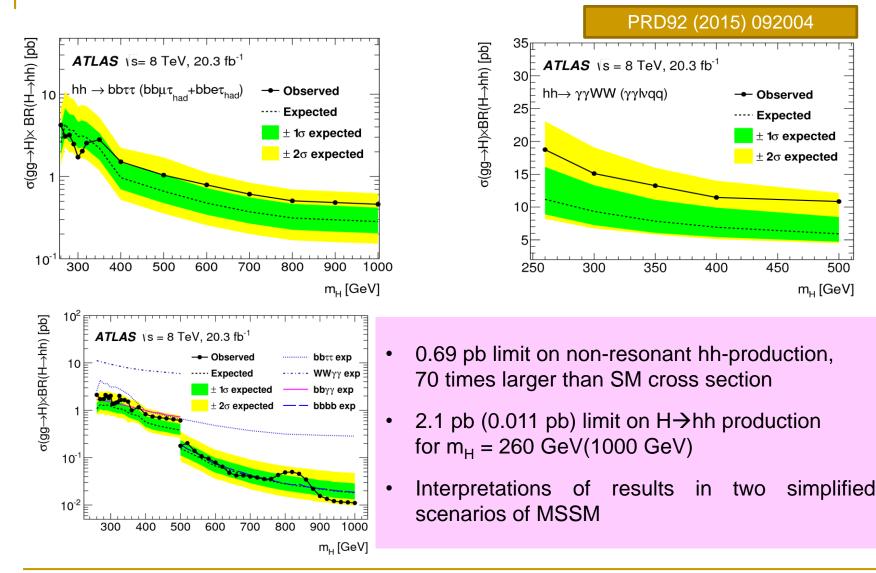

jet multiplicities

VBF H→invisible at 8 TeV

arXiv:1508.07869, JHEP01 (2016) 172

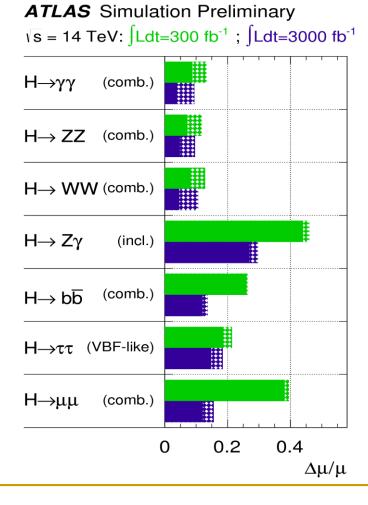
Obtained/expected limits on $BR(H \rightarrow inv.)$ for VBF mechanism

Rare H and Z decays to J/ $\psi\gamma$ and Y γ at 8 TeV


Q	uarkonia we	PRL 114 (2015) 121801							
=			95%						
_		J/ψ	$\Upsilon(1S)$	$\Upsilon(2S)$	$\Upsilon(3S)$	$\sum^{n} \Upsilon(nS)$			
$\mathcal{B}\left(Z \to \mathcal{Q}\gamma\right)\left[\begin{array}{c}10^{-6}\end{array}\right]$									
-	Expected	$2.0^{+1.0}_{-0.6}$	$4.9^{+2.5}_{-1.4}$	$6.2^{+3.2}_{-1.8}$	$5.4^{+2.7}_{-1.5}$	$8.8^{+4.7}_{-2.5}$			
	Observed	2.6	3.4	6.5	5.4	7.9			
$\mathcal{B}(H \to \mathcal{Q}\gamma) \left[10^{-3} \right]$									
-	Expected	$1.2^{+0.6}_{-0.3}$	$1.8^{+0.9}_{-0.5}$	$2.1^{+1.1}_{-0.6}$	$1.8^{+0.9}_{-0.5}$	$2.5^{+1.3}_{-0.7}$			
	Observed	1.5	1.3	1.9	1.3	2.0			
$\sigma \left(pp \to H \right) \times \mathcal{B} \left(H \to \mathcal{Q} \gamma \right) \text{ [fb]}$									
_	Expected	26^{+12}_{-7}	38^{+19}_{-11}	45^{+24}_{-13}	38^{+19}_{-11}	54^{+27}_{-15}			
_	Observed	33	29	41	28	44			

No one from considered rare decays was observed in 8 TeV data

I. Tsukerman, NewTrends16


03.10.2016

Pair production of Higgs bosons at 8 TeV

Higgs boson perspectives

ATLAS-PHYS-PUB-2014-016

Recent HL-LHC related notes:

VBF $H \rightarrow WW^* \rightarrow ev\mu v$ PUB-2016-018

VBF H→ZZ^{*}→4/ PUB-2016-008

H→J/ψγ PUB-2015-043

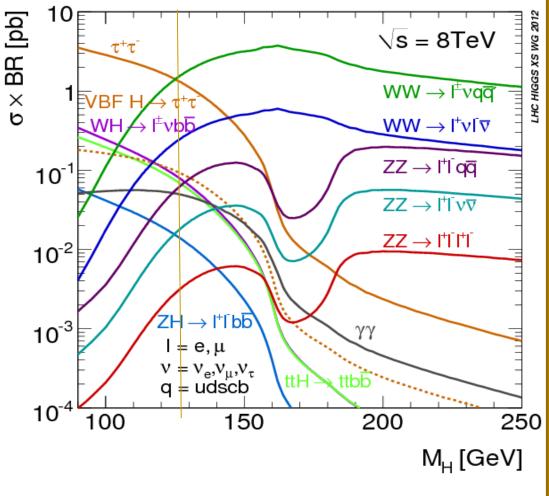
HH→bbττ PUB-2015-046

Off-shell H→ZZ→4/ PUB-2015-024

Higgs boson in the Standard Model (SM)

- Higgs boson (H) provides fundamental particles with masses
- Higgs boson mass is the only free parameter in the theory. From theoretical considerations (perturbative unitarity): m_H < 1 T₉B
- H is expected to have vacuum quantum numbers, i.e. J^P =0⁺

What we knew about H boson four years ago?


 m_H>114.4 GeV at 95% CL, smaller masses excluded at higher level Combined results from four LEP experiments, PL B565 (2003) 61

• $m_H < 152 \text{ GeV}$ at 95% CL, predicted value: $m_H = 94^{+29}_{-24} \text{ GeV}_{-24}$

from theoretical analysis of EW precision data, <u>http://lepewwg.web.cern.ch</u>

■ Discovered by both ATLAS and CMS experiments, m_H ≈125 GeV ATLAS: PL B716 (2012) 1, CMS: PL B716 (2012) 30; seminar at CERN 04.07.2012 Note. FNAL CDF + D0 experiments found ≈3σ evidence for H boson

$\sigma \times BR$ for SM Higgs boson from theory at 8 TeV

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections

1.5 pb for ττ and ℓνqq (very difficult modes)
0.25 pb for WW^{*}→ℓνℓν (only transverse mass)
0.1 pb for VBF ττ , WH→ℓνbb, ZZ^{*}→ℓℓqq, ℓℓνν (only transverse mass)

m(H)=125 GeV

(measured value):

0.05 pb for $H \rightarrow \gamma \gamma$ (mass: OK, but S/B<<1)

0.003 pb $H \rightarrow ZZ^* \rightarrow 4\ell$ ("gold-plate" mode)

0.004 pb H→μμ (huge Drell-Yan background)