

V ежегодная конференция молодых ученых и специалистов «Алушта-2016»

Применение программных пакетов FLUKA и GEANT4 для изучения методов получения ⁶Не

Кабытаева Раушан Канапияновна

Научный руководитель: к.ф-м.н. Тетерев Юрий Геннадьевич

СОДЕРЖАНИЕ:

- 1) Программные пакеты FLUKA & GEANT4
- 2) Применение экзотического ядра ⁶Не
- 3) Результаты моделирования и проведенных экспериментов

<u>Получение ⁶Не в реакциях ⁷Li(²H, ³He) ⁶He, ⁷Li(γ, p) ⁶He и ⁹Be(n, α) ⁶He:</u>

исследование зависимости выхода гелия от:

- размеров мишени и конвертера;
- энергии ускоренного пучка

• ПРИМЕНЕНИЕ

В ядерной физике:

- -для того чтобы понять как устроено ядро
- -для получения информации о свойствах экзотических ядер
- Структура ⁶Не интересна следующим:
- аномальное повышение радиуса, которое носит название "нейтронное гало "
- ⁶Не является борромейским ядром

В физике слабых взаимодействий:

- -для изучения осцилляции нейтрино и массы нейтрино
- <u>Ядро ⁶Не является идеальным кандидатом для изучения слабого взаимодействия,</u> так как:
- •период полураспада ⁶Не составляет 807мс, который является достаточно удобным.
- •ядро ⁶Не это простая система нескольких частиц, для которых неэмпирические расчеты могут быть выполнены с высокой точностью.
- •гелий благородный газ и эффекты, обусловленные химическими взаимодействиями, сводятся к минимуму.

GEANT4 SIMULATIONS

Получение ⁶Не в реакции ⁷Li(²H, ³He)

Настройка литиевой мишени на линии пучка. 1-вакуумный корпус входящего пучка дейтрона; 2- коллимация пучка; 3-литиевая мишень; 4- механическая обработка расплавленного лития; 5-труба для извлечения ⁶Не; 6- нейтронная защита.

Сечение реакции 7Li(2H, 3He) 6He и зависимость выхода от энергии дейтрона

YGEANT4 = 2.8· 10⁹ядер/с·1µА.

Получение радиоактивного пучка ионов 6Не+

на различных установках

Город, страна где расположена установка	Установка	Интенсивность пучка, атомов/с мкА	Энергия ускоренных частиц, МэВ
Лювэн-ла-Нёф (Бельгия)	ARENAS	10 ⁶	30
Дубна (Россия)	DRIBs	5 .107	32
Сиэтл (США)	Генератор Ван де Граафа	109	18

Микротрон МТ-25

ЭЦР источник

Схема экспериментальной установки

1-тормозная мишень,

2- металлический сосуд, заполненный облучаемым веществом, 3- трубчатая печь, 4- криогенная ловушка с жидким азотом, 5 и 9 – вакуумметры, 6,10 и 11- вакуумные шиберы, 7- ЭЦР источник, 8- стоппер пучка ионов ⁶He⁺, 12 и 13- турбомолекулярные насосы, 14- форвакуумный насос, 15буферный объем, 16 – защитная стенка из тяжелого бетона.

Ускорительный комплекс DRIBs

FLUKA & GEANT4 SIMULATIONS

Получение ⁶Не в реакции ⁷Li(γ,р)

Флюенс фотона на плоскости XZ [фотонов/ см 2 / с] с электронным пучком энергией 22 МэВ и интенсивностью I = 20 µА (мишень LiF с плотностью

le+11 le+10 le+9 le+2 de 0 5 10 15 20 25 30 35

сечение реакции ⁷Li(γ, p) ⁶He и спектр фотонов

FLUKA, GEANT4 SIMULATIONS and Experimental results

Получение ⁶Не в реакции ⁷Li(γ,р)

Зависимость выхода ⁶Не от толщины конвертера, температуры, диаметра и длины мишени

FLUKA, GEANT4 SIMULATIONS and Experimental results

Получение ⁶Не в реакции ⁷Li(γ,р)

Экспериментально измерена зависимость выхода гелия в диапазоне энергий от 20,8 МэВ до 23,5 МэВ. В данном диапазоне выход гелия увеличивался линейно, и увеличение составило 54%.

Диаметр d и длина	Выход ⁶ Не,ядер/с· 1 µА			
l сосуда с LiF	FLUKA и GEANT4	Exp		
d=8.4см, l=30см	$Y_{FLUKA} = (1.3 \pm 0.14) \cdot 10^8$ $Y_{GEANT4} = (1.2 \pm 0.14) \cdot 10^8$	(1.7±0.46)· 10 ⁸		
d=4см, l=20см	$Y_{FLUKA} = (6.5 \pm 0.1) \cdot 10^7$ $Y_{GEANT4} = (4.5 \pm 0.1) \cdot 10^7$	$(9.6 \pm 1.4) \cdot 10^7$		

Получение ⁶Не в реакции⁹Ве(n, α)

$N_0(E) = e^{-E} \cdot sh\sqrt{2E}$	
$N = N_o^{-\Sigma_t \cdot X}$	
$\sum_t = \sigma_t \cdot n_A$	
$n_A = rac{ ho_{BeO} \cdot N_A}{A} \cdot R$	
$Y_{6\text{He}} = \int_{0}^{Emax} \sigma(E) N(E) dE \cdot \mathbf{n}$	$A_{A} = \sum_{i=0}^{n} \sigma(E_{i}) N(E_{i}) \Delta \mathbf{I}$

	Выход ⁶ Не, ядер/с∙1µА		
Радиус, см	Плотность мишени BeO, р=3.01г/см ³	Плотность мишени ВеО, р=1.5г/см ³	
1	3.42109.107	1.97576·10 ⁷	
2	5.13164·10 ⁷	3.41695.107	
3	5.74048·10 ⁷	4.44276.107	
4	5.74048·10 ⁷	5.12904·10 ⁷	
5	5.36358·10 ⁷	5.54442.107	
6	4.81852·10 ⁷	5.76475·10 ⁷	
7	4.20606·10 ⁷	5.81532·10 ⁷	
8	3.59505·10 ⁷	5.7503·10 ⁷	
9	3.0268.107	5.62388·10 ⁷	
10	2.51508·10 ⁷	5.418·10 ⁷	

и плотности мишени ВеО

*Fernandes S., Submicro- and Nanostructured Porous Materials for Production of High- Intensity Exotic Radioactive Ion Beams, PhD Thesis, Ecole Polytechnique Federale de Lausanne, Switzerland (2010).

- В реакции ⁷Li(d,3He) ⁶He при ускоренных дейтронов на генераторе Ван де Граафа до энергии 18 МэВ, выход ⁶He составил Y_{GEANT4} = 2.8·10⁹ ядер/с.
- 2) Оптимальная толщина конвертера в реакции ⁷Li(γ,p) ⁶He была определена путем сравнения выхода ⁶He из различных толщин конвертера. С помощью этого метода, была установлена оптимальная толщина конвертера, которая составила 0.32см.
 - Были установлены зависимости выхода ⁶Не от энергии электронов, диаметра и длины мишени.
 - В качестве мишени использована соль LiF с плотностью p = 1.0г/см³, который был загружен в цилиндрический сосуд внутренним диаметром 84 мм на длину 300 мм. Выход ⁶Не, который был получен с помощью программных пакетов FLUKA, GEANT4 составил $Y_{FLUKA} = (1.3 \pm 0.14) \cdot 10^8$ ядер/с·1µA, $Y_{GEANT4} = (1.2 \pm 0.14) \cdot 10^8$ ядер/с·1µA и экспериментально в ЛЯР, на микротроне MT-25 $Y_{Exp} = (1.7 \pm 0.46) \cdot 10^8$ ядер/с·1µA.
- 3) В качестве мишени использован BeO с плотностью ρ₁= 3.01 г/см³ и ρ₂ = 1.5 г/см³, выход ⁶Не при плотности оксида бериллия 1.5 г/см³ и радиусе 7см составил Y_{6He} = 5.8·10⁷ ядер/с, что примерно в 2 раза меньше, чем выход ⁶Не в реакции ⁷Li(γ,p)⁶He.

!!!Преимуществом использования электронного пучка является его низкая стоимость по сравнению с ионными пучками.

Реакция	Выход ⁶ Не,ядер/с∙ 1 µА		
	FLUKA	GEANT ₄	Экспериментальные данные
⁷ Li(d, ³ He) ⁶ He (E _d =18M 3 B)		(2.8±1.23)· 10 ⁹	$6.2 \cdot 10^8$
⁷ Li(ү,р) ⁶ He (Е _e =22МэВ)	(1.3±0.14)· 10 ⁸	$(1.2\pm0.14) \cdot 10^8$	$(1.7\pm0.46) \cdot 10^8$
⁹ Be(n,α) ⁶ He E _e =22M3B)	5.8.107		

1) http://dx.doi.org/10.1088/1742-6596/312/5/052013

M. Lebois and P. Bricault, Simulations for the future converter of the e-linac for the TRIUMF ARIEL facility, Proceedings of the International Nuclear Physics Conference 2010, TRIUMF, Vancouver, BC, July 4-9, 2010, Journal of Physics : Conference Series 312, 052013, 2011.

2) http://www.fluka.org/web_archive/earchive/new-fluka-discuss/5563.html New Developments in FLUKA F. Cerutti1, A. Ferrari1, A. Mairani2, P.R. Sala0 1 European Laboratory for Particle Physics (CERN), CH-1211 Geneva 23, Switzerland 0 INFN, Via Celoria 16, 20133, Milan, Italy 2 CNAO foundation, Pavia, Italy

<u>3)http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/PhysicsReferenceManual</u>/fo/PhysicsReferenceManual.pdf

Fermi break-up simulation for light nuclei

For light nuclei the values of excitation energy per nucleon are often comparable with nucleon binding energy. Thus a light excited nucleus breaks into two or more fragments with branching given by available phase space. To describe a process of nuclear disassembling the so-called Fermi breakup model is formulated [1], [2], [3], [4]. This statistical approach was first used by Fermi [1] to describe the multiple production in high energy nucleon collision. The GEANT4 Fermi break-up model is capable to predict final states as result of an excited nucleus with Z < 9 and A < 17 statistical break-up.

[1] Fermi E., Prog. Theor. Phys. 5 1570 (1950).
[2] Kretschmar M. Annual Rev. Nucl. Sci. 11 1 (1961).
[3] Epherre M., Gradsztajn E., J. Physique 18 48 (1967).
[4] Bonorf J. P., Botvina A. S., Iljinov A. S., Mishustin I. N., Sneppen K., Phys. Rep. 257 133 (1995).

СПАСИБО ЗА ВНИМАНИЕ

Кабытаева Раушан Канапияновна

Тема доклада: Применение программных пакетов FLUKA и GEANT4 для изучения методов получения ⁶Не