The spectrum and separability of 2-qubit mixed X-states

Arsen Khvedelidze, Astghik Torosyan
LIT, JINR, Dubna, Russia

The V Annual Scientific Conference of Young Scientists and Specialists '2016

Alushta, Russia

Content

(1) Introduction
(2) Eigenvalue decomposition for X-states
(3) Applying the Peres-Horodecki separability criterion
(4) Conclusion

Qubit

A generic mixed state ${ }^{1}$ of an n-level quantum system is described by an $n \times n$ complex matrix - the density matrix ρ, satisfying the following conditions:
(1) Hermicity: $\rho=\rho^{\dagger}$,
(2) finite trace: $\operatorname{Tr}(\rho)=1$,
(3) positive semidefiniteness: $\rho \geq 0$.

The state of a qubit is given by a density matrix:

$$
\begin{equation*}
\rho=\frac{1}{2}(1+\boldsymbol{\alpha} \cdot \boldsymbol{\sigma}), \quad \boldsymbol{\alpha}^{2} \leq 1 \tag{1}
\end{equation*}
$$

where $\boldsymbol{\alpha}=\operatorname{Tr}(\sigma \rho)$ is the expectation and σ is the set of Pauli matrices.
${ }^{1}$ The special class of idempotent matrices, satisfying $\rho^{2}=\rho$, corresponds to the so-called pure states. A mixed state is a mixture of pure states.

Composite states

The space of states of the system, obtained by joining two systems 1 and 2 , is a subspace of the tensor product of their individual Hilbert spaces \mathcal{H}_{1} and \mathcal{H}_{2} :

$$
\begin{equation*}
\mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2} \tag{2}
\end{equation*}
$$

The density matrix ρ, describing mixed states of system \mathcal{H}, is separable, if it allows the convex decomposition:

$$
\begin{equation*}
\rho=\sum_{k} \omega_{k} \rho_{1}^{k} \otimes \rho_{2}^{k}, \quad \sum_{k} \omega_{k}=1, \quad \omega_{k} \geq 0 \tag{3}
\end{equation*}
$$

where ρ_{1}^{k} and ρ_{2}^{k} represent the density matrices, acting on the corresponding multiplier of \mathcal{H}. Otherwise it is entangled.

Two qubits

Consider the density matrix of two qubits, parametrized in the Fano form:

$$
\begin{equation*}
\rho=\frac{1}{4}\left[\mathbb{I}_{2} \otimes \mathbb{I}_{2}+\mathbf{a} \cdot \boldsymbol{\sigma} \otimes \mathbb{I}_{2}+\mathbf{b} \cdot \mathbb{I}_{2} \otimes \boldsymbol{\sigma}+c_{i j} \sigma_{i} \otimes \sigma_{j}\right], \tag{4}
\end{equation*}
$$

where

- $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right)$ are the Bloch vectors of the constituent qubits,
- $C=\left\|c_{i j}\right\|$ is the so-called "correlation matrix",
- $\sigma_{1}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \sigma_{2}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right), \sigma_{3}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ are the Pauli matrices.

Are there mixed states, which are separable for an arbitrary spectrum of ρ ?

$2-$ qubit X-states

The density matrices of the form:

$$
\rho_{X}:=\left(\begin{array}{cccc}
\rho_{11} & 0 & 0 & \rho_{14} \tag{5}\\
0 & \rho_{22} & \rho_{23} & 0 \\
0 & \rho_{32} & \rho_{33} & 0 \\
\rho_{41} & 0 & 0 & \rho_{44}
\end{array}\right), \quad\left\{\begin{array}{l}
\rho_{11}, \rho_{22}, \rho_{33}, \rho_{44} \in \mathbb{R}, \\
\rho_{14}=\bar{\rho}_{14}, \rho_{23}=\bar{\rho}_{32} \\
\sum_{i=1}^{4} \rho_{i i}=1,
\end{array}\right.
$$

are called the X-states.
The matrix (5) is unitary equivalent to the diagonal matrix

$$
\begin{equation*}
\rho_{X}=K W P \operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right) P W^{\dagger} K^{\dagger} \tag{6}
\end{equation*}
$$

where $K=\exp \left(i \frac{u}{2} \sigma_{3}\right) \otimes \exp \left(i \frac{V}{2} \sigma_{3}\right) \in S U(2) \otimes S U(2)$ and

$$
W=\left(\begin{array}{c|c}
e^{i \frac{\phi_{1}}{2} \sigma_{2}} & 0 \tag{7}\\
\hline 0 & e^{i \frac{\phi_{2}}{2} \sigma_{2}}
\end{array}\right), P=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

Spectrum of $2-$ qubit X-states

The spectrum $\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right\}$ of the diagonal density matrix $\rho_{X}{ }^{2}$ forms the partially ordered simplex ${ }^{3} \underline{\Delta}_{3}$ (Fig. 1):

$$
\left\{\begin{array}{l}
\sum_{i=1}^{4} \lambda_{i}=1 \\
0 \leq \lambda_{2} \leq \lambda_{1} \leq 1 \tag{8}\\
0 \leq \lambda_{4} \leq \lambda_{3} \leq 1
\end{array}\right.
$$

Figure 1 : The partially ordered simplex Δ_{3}.
${ }^{2} \rho_{X}=K W P \operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right) P W^{\dagger} K^{\dagger}$.
${ }^{3}$ Partially ordered simplex is the quotient of a standard simplex by action of transposition subgroup $P_{2} \times P_{2} \subset P_{4}$.

The separability as a function of density matrices eigenvalues $\{\boldsymbol{\lambda}\}$

According to the Peres-Horodecki criterion, which is a necessary and sufficient condition of separability for $2 \otimes 2$ and $2 \otimes 3$ dimensional systems, a state ρ is separable iff its partial transposition is semi-positive as well.

The partial transposition $\rho^{T_{2}}$ of a 2 -qubit density matrix with respect to the ordinary transposition operation T in the second subsystem is defined as:

$$
\begin{equation*}
\rho^{T_{2}}=l \otimes T \rho, \quad T\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right) \rightarrow\left(\sigma_{1},-\sigma_{2}, \sigma_{3}\right) \tag{9}
\end{equation*}
$$

Similarly, one can use the alternative action: $\rho^{T_{1}}=T \otimes I \rho$.

The separability conditions

Applying the Peres-Horodecki separability criterion to the X-state density matrix $\rho_{X}{ }^{4}$, we conclude, that it is separable iff:

$$
\begin{align*}
& \left(\lambda_{1}-\lambda_{2}\right)^{2} \cos ^{2} \phi_{1}+\left(\lambda_{3}-\lambda_{4}\right)^{2} \sin ^{2} \phi_{2} \leq\left(\lambda_{1}+\lambda_{2}\right)^{2}, \tag{10}\\
& \left(\lambda_{3}-\lambda_{4}\right)^{2} \cos ^{2} \phi_{2}+\left(\lambda_{1}-\lambda_{2}\right)^{2} \sin ^{2} \phi_{1} \leq\left(\lambda_{3}+\lambda_{4}\right)^{2} . \tag{11}
\end{align*}
$$

New variables (x, y) and parameters (a, b, c, d) as functions of the density matrix eigenvalues and angles ϕ_{1} and ϕ_{2} :

$$
\left\{\begin{array} { l }
{ x = (\lambda _ { 1 } - \lambda _ { 2 }) ^ { 2 } \operatorname { c o s } ^ { 2 } \phi _ { 1 } , } \tag{13}\\
{ y = (\lambda _ { 3 } - \lambda _ { 4 }) ^ { 2 } \operatorname { c o s } ^ { 2 } \phi _ { 2 } , }
\end{array} \quad (1 2) \quad \left\{\begin{array}{l}
a=\left(\lambda_{1}+\lambda_{2}\right)^{2}-\left(\lambda_{3}-\lambda_{4}\right)^{2} \\
b=-\left(\lambda_{1}-\lambda_{2}\right)^{2}+\left(\lambda_{3}+\lambda_{4}\right)^{2} \\
c=\left(\lambda_{1}-\lambda_{2}\right)^{2}, d=\left(\lambda_{3}-\lambda_{4}\right)^{2}
\end{array}\right.\right.
$$

${ }^{4} \rho_{\chi}=K W P \operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right) P W^{\dagger} K^{\dagger}$.

The parameters (a, b, c, d) obey the inequalities:

$$
\begin{equation*}
a+b \geq 0, \quad a+d \geq 0, \quad b+c \geq 0 \tag{14}
\end{equation*}
$$

Thus, the separability conditions in the form of two inequalities (10) ${ }^{5}$ and (11) ${ }^{6}$ linearize:

$$
\begin{cases}x-y \leq a, & 0 \leq x \leq c \tag{15}\\ y-x \leq b, & 0 \leq y \leq d\end{cases}
$$

Hence, the inequalities (15) have solutions for all possible values of parameters from the restrictions (14).

$$
\begin{aligned}
& { }^{5}\left(\lambda_{1}-\lambda_{2}\right)^{2} \cos ^{2} \phi_{1}+\left(\lambda_{3}-\lambda_{4}\right)^{2} \sin ^{2} \phi_{2} \leq\left(\lambda_{1}+\lambda_{2}\right)^{2} . \\
& { }^{6}\left(\lambda_{3}-\lambda_{4}\right)^{2} \cos ^{2} \phi_{2}+\left(\lambda_{1}-\lambda_{2}\right)^{2} \sin ^{2} \phi_{1} \leq\left(\lambda_{3}+\lambda_{4}\right)^{2} .
\end{aligned}
$$

For eigenvalues from the partially ordered simplex $\underline{\Delta}_{3}$ the separability conditions ${ }^{7}$ of the X-state density matrix $\rho_{X}{ }^{8}$ determine non empty domain (Fig. 2) for angles ϕ_{1} and ϕ_{2}.

Figure 2: Plots (I-V) - families of solutions: Domain (I) : $a<0, b=-a, c \geq 0, d \geq b$; Domain (II): $a<0, b\rangle-a, c \geq 0, d \geq-a$; Domain (III): $a=0, b \geq 0, c \geq 0, d \geq 0$; Domain (IV): $a>0,-a \leq b \leq 0, c \geq-b, d \geq 0$; Domain (V): $a>0, b>0, c \geq 0, d \geq 0$.

There exists 4 -parametric family of separable mixed X-states of $2-$ qubits with an arbitrary spectrum of the density matrix.

$$
\begin{aligned}
& { }^{7}\left(\lambda_{1}-\lambda_{2}\right)^{2} \cos ^{2} \phi_{1}+\left(\lambda_{3}-\lambda_{4}\right)^{2} \sin ^{2} \phi_{2} \leq\left(\lambda_{1}+\lambda_{2}\right)^{2},\left(\lambda_{3}-\lambda_{4}\right)^{2} \cos ^{2} \phi_{2}+\left(\lambda_{1}-\lambda_{2}\right)^{2} \sin ^{2} \phi_{1} \leq\left(\lambda_{3}+\lambda_{4}\right)^{2} . \\
& { }^{8} \rho_{X}=K W P \operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right) P W^{\dagger} K^{\dagger} .
\end{aligned}
$$

The absolute separability conditions

The states of n-dimensional quantum system, remaining separable under the adjoint action of the $S U(n)$-transformations of $n \times n$ density matrices, are called absolute separable.

Are there X-states, which are separable for arbitrary angles ϕ_{1} and ϕ_{2} ?
The inequalities in the eigenvalues of X-matrices, defining the absolutely separable X-states, read:

$$
\left\{\begin{array}{l}
\lambda_{1}-\lambda_{2} \leq 2 \sqrt{\lambda_{3} \lambda_{4}}, \\
\lambda_{3}-\lambda_{4} \leq 2 \sqrt{\lambda_{1} \lambda_{2}}
\end{array}\right.
$$

(16)

Figure 3: The absolute separability region.

On the generalization to an arbitrary 2 -qubit states

The Peres-Horodecki separability criterion can be written in the form of polynomial inequalities in the $\operatorname{SU}(4)$ Casimir invariants $\mathfrak{C}_{2}, \mathfrak{C}_{3}, \mathfrak{C}_{4}$ and two $S U(2) \times S U(2)$-invariant polynomials ${ }^{9}$.
In general case,

- the determinants $\operatorname{det}(C), \operatorname{det}(M)$ are analogues of angles ϕ_{1}, ϕ_{2} of X-states,
- the Casimir invariants $\mathfrak{C}_{2}, \mathfrak{C}_{3}, \mathfrak{C}_{4}$ are analogues of eigenvalues λ_{1}, λ_{2}, λ_{3}, λ_{4} of X-states.

[^0]
Conjecture

Conjecture: The inequalities

$$
\left\{\begin{array}{l}
0 \leq 3 \mathfrak{C}_{2}-2 \mathfrak{C}_{3}-4 \operatorname{det}(C) \leq 1 \tag{17}\\
0 \leq\left(1-3 \mathfrak{C}_{2}\right)^{2}+8 \mathfrak{C}_{3}-12 \mathfrak{C}_{4}+16 \operatorname{det}(M) \leq 1
\end{array}\right.
$$

have solutions for unknown $\operatorname{det}(C)$ and $\operatorname{det}(M)$ for all values of Casimir invariants $\mathfrak{C}_{2}, \mathfrak{C}_{3}$ and \mathfrak{C}_{4}, which are constrained by the inequalities:

$$
\left\{\begin{array}{l}
0 \leq \mathfrak{C}_{2} \leq 1 \tag{18}\\
0 \leq 3 \mathfrak{C}_{2}-2 \mathfrak{C}_{3} \leq 1 \\
0 \leq\left(1-3 \mathfrak{C}_{2}\right)^{2}+8 \mathfrak{C}_{3}-12 \mathfrak{C}_{4} \leq 1
\end{array}\right.
$$

Thank you for attention

[^0]: ${ }^{9}$ Here the determinants of correlation $C=\left\|c_{i j}\right\|$ and Schlienz-Mahler matrix $M=\left\|c_{i j}-a_{i} b_{j}\right\|$ are the $S U(2) \times S U(2)-$ polynomial invariants

