Multiple parton interactions in $p\bar{p}$ collisions in D0 experiment at the Tevatron

Georgy Golovanov

DLNP

Joint Institute for Nuclear Research Dubna, Russia

AYSS school

Alushta 5–12 June, 2016

- Motivation
- Multiple parton interactions
- Estimation of Double Parton event fraction
- $\sigma_{\it eff}$ measurement
- Conclusion

Hard 2 \rightarrow 2 scattering

outgoing parton(s)

Hard 2 \rightarrow 2 scattering

+ Gluon radiation in initial and final states

Hard 2 \rightarrow 2 scattering

+ Gluon radiation in initial and final states

+ Hadronization, fragmentation

Structure of a hadron-hadron collision

Hard 2 \rightarrow 2 scattering

+ Gluon radiation in initial and final states

+ Hadronization, fragmentation

+ Additional parton-parton scattering

Double parton-parton interaction

Double parton-parton cross section:

$$\sigma_{DP} = \frac{\sigma_A \sigma_B}{\sigma_{eff}} \tag{1}$$

Effective cross section σ_{eff} – a parameter which characterizes size of the effective interaction region of partons in a proton \rightarrow contains information about spatial distribution of partons within a hadron.

Effective cross section

Effective cross section is directly related to the parton density within a hadron:

$$\sigma_{eff} = \left[\int d^2 \beta [F(\beta)]^2 \right]^{-1} \qquad (2)$$

$$F(\beta) = \int d^2\beta f(b)f(b-\beta), \quad (3)$$

where β – impact parameter, f(b) – parton density function.

Being phenomenological, σ_{eff} strongly needs experimental input in order to estimate f(b).

Motivations

- Distinctive feature: interaction of two parton-parton pairs within the same $p\bar{p}$ collision.
- The rate of multiparton interactions in $p\bar{p}$ collisions is directly related to the transverse spatial distribution of partons within the proton.
- Proper estimation of the background to rare processes especially with multi-jet final state.

Main contribution to diphoton production at the Tevatron:

- $q\bar{q}
 ightarrow \gamma\gamma$ (Born process)
- $gg
 ightarrow \gamma\gamma$ (Box process)
- Additional LO processes with double patron-to-photon fragmentation are mostly suppressed by photon isolation requirements.
- The Born scattering significantly dominates over box process, with its fraction of 70-80%.

DØ @ Tevatron

- A decade of successful running;
- $\sim 12 \ {\rm fb}^{-1}$ delivered with DØ data-taking efficiency >90%;
- Current analysis is based on 8.7 fb^{-1} .

Background: Single Parton event

Single 2 \rightarrow 4 scattering with two bremsstrahlung jets in event with 1 $p\bar{p}$ collision.

Signal: Double Parton event

Two $2 \rightarrow 2$ scatterings:

- I 1st scattering produces $\gamma\gamma$ pair, 2nd scattering - dijet;
- II $\gamma\gamma + 1$ bremsstrahlung jet from 1st scattering plus one observed jet from 2nd scattering.

Discriminating variable

$$\Delta S = \Delta \phi(\vec{q}_T^1, \vec{q}_T^2),$$

an azimuthal angle between imbalance vectors of diphoton (\vec{q}_T^1) and dijet (\vec{q}_T^2) pairs.

DP Type I

Double parton event fraction

• DP event fraction is found by calculating the efficiency to pass specific ΔS cut in data, signal (MIXDP) and background (SHERPA) event models:

$$f_{DP} = \frac{\epsilon_{DATA} - \epsilon_{SP}}{\epsilon_{DATA} - \epsilon_{DP}} \quad (4)$$
$$f_{DP} = 0.191 \pm 0.008 \quad (5)$$

 As a cross check, DP event fraction is found by fitting ΔS shapes in Single Parton and Double Parton event models to data.

Both results are consistent.

Georgy Golovanov (JINR)

Effective cross section

- Having measured number of DP events and corresponding acceptances and efficiencies one can calculate σ_{eff} .
- Measured σ_{eff} is in agreement with most Tevatron and LHC measurements within uncertainties.

$$\sigma_{eff} = 19.3 \pm 1.4(stat) \pm 7.8(syst)mb \tag{7}$$

- Kinematic features of Double Parton events have been studied using $\gamma\gamma$ + dijet final state for the first time;
- $\bullet\,$ The fraction of DP events is found to be 0.191 \pm 0.008;
- Effective cross section (defines rate of Double Parton events), σ_{eff} , has been measured using $\gamma\gamma$ + dijet final state and found to be $19.2 \pm 1.5(stat) \pm 4.1(syst)$ mb.
- The obtained $\sigma_{\it eff}$ value is in agreement with most LHC and previous Tevatron measurements.

Thanks for your attention!

