Multiple parton interactions in $p \bar{\rho}$ collisions in D0 experiment at the Tevatron

Georgy Golovanov

DLNP

Joint Institute for Nuclear Research
Dubna, Russia

AYSS school

Alushta
5-12 June, 2016

Outline

- Motivation
- Multiple parton interactions
- Estimation of Double Parton event fraction
- $\sigma_{\text {eff }}$ measurement
- Conclusion

Structure of a hadron-hadron collision

Hard $2 \rightarrow 2$ scattering

Structure of a hadron-hadron collision

Structure of a hadron-hadron collision

Hard $2 \rightarrow 2$ scattering

+Gluon radiation in initial and final states

+ Hadronization, fragmentation

Structure of a hadron-hadron collision

Hard $2 \rightarrow 2$ scattering

+ Gluon radiation in initial and final states
+ Hadronization, fragmentation
+ Additional parton-parton scattering

Double parton-parton interaction

Double parton-parton cross section:

$$
\begin{equation*}
\sigma_{D P}=\frac{\sigma_{A} \sigma_{B}}{\sigma_{e f f}} \tag{1}
\end{equation*}
$$

Effective cross section $\sigma_{\text {eff }}$ - a parameter which characterizes size of the effective interaction region of partons in a proton \rightarrow contains information about spatial distribution of partons within a hadron.

Effective cross section

Effective cross section is directly related to the parton density within a hadron:

$$
\begin{align*}
\sigma_{e f f} & =\left[\int d^{2} \beta[F(\beta)]^{2}\right]^{-1} \tag{2}\\
F(\beta) & =\int d^{2} \beta f(b) f(b-\beta) \tag{3}
\end{align*}
$$

where β - impact parameter, $f(b)$ - parton density function.

Being phenomenological, $\sigma_{\text {eff }}$ strongly needs experimental input in order to estimate $f(b)$.

Motivations

- Distinctive feature: interaction of two parton-parton pairs within the same $p \bar{p}$ collision.
- The rate of multiparton interactions in $p \bar{p}$ collisions is directly related to the transverse spatial distribution of partons within the proton.
- Proper estimation of the background to rare processes especially with multi-jet final state.

Diphoton production at the Tevatron

Main contribution to diphoton production at the Tevatron:

- $q \bar{q} \rightarrow \gamma \gamma$ (Born process)
- $g g \rightarrow \gamma \gamma$ (Box process)

- Additional LO processes with double patron-to-photon fragmentation are mostly suppressed by photon isolation requirements.
- The Born scattering significantly dominates over box process, with its fraction of $70-80 \%$.

DØ © Tevatron

- A decade of successful running;
- $\sim 12 \mathrm{fb}^{-1}$ delivered with $\mathrm{D} \emptyset$ data-taking efficiency $>90 \%$;
- Current analysis is based on $8.7 \mathrm{fb}^{-1}$.

Signal and background event types

Background: Single Parton event

Single $2 \rightarrow 4$ scattering with two bremsstrahlung jets in event with 1 $p \bar{p}$ collision.

Signal: Double Parton event

Two $2 \rightarrow 2$ scatterings:
| 1st scattering produces $\gamma \gamma$ pair, 2nd scattering - dijet;
II $\gamma \gamma+1$ bremsstrahlung jet from 1st scattering plus one observed jet from 2nd scattering.

Discriminating variable

$$
\Delta S=\Delta \phi\left(\vec{q}_{T}^{1}, \vec{q}_{T}^{2}\right),
$$

DP Type I

Double parton event fraction

- DP event fraction is found by calculating the efficiency to pass specific ΔS cut in data, signal (MIXDP) and background (SHERPA) event models:

$$
\begin{align*}
f_{D P} & =\frac{\epsilon_{D A T A}-\epsilon_{S P}}{\epsilon_{D A T A}-\epsilon_{D P}} \tag{4}\\
f_{D P} & =0.191 \pm 0.008 \tag{5}
\end{align*}
$$

- As a cross check, DP event fraction is found by fitting ΔS shapes in Single Parton and Double Parton event models to data.

$$
\begin{equation*}
f_{D P}^{f i t}=0.195 \pm 0.067 \tag{6}
\end{equation*}
$$

Both results are consistent.

Effective cross section

- Having measured number of DP events and corresponding acceptances and efficiencies one can calculate $\sigma_{\text {eff }}$.
- Measured $\sigma_{\text {eff }}$ is in agreement with most Tevatron and LHC measurements within uncertainties.

$$
\begin{equation*}
\sigma_{\text {eff }}=19.3 \pm 1.4(\text { stat }) \pm 7.8(\text { syst }) m b \tag{7}
\end{equation*}
$$

Conclusion

- Kinematic features of Double Parton events have been studied using $\gamma \gamma+$ dijet final state for the first time;
- The fraction of DP events is found to be 0.191 ± 0.008;
- Effective cross section (defines rate of Double Parton events), $\sigma_{\text {eff }}$, has been measured using $\gamma \gamma+$ dijet final state and found to be $19.2 \pm 1.5(\mathrm{stat}) \pm 4.1$ (syst) mb.
- The obtained $\sigma_{\text {eff }}$ value is in agreement with most LHC and previous Tevatron measurements.

Thanks for your attention!

