V annual scientific conference of young scientists and specialists, devoted to the 60th anniversary of JINR «Алушта-2016», Alushta, Crimea

ACCULINNA-2: new RIB facility at JINR

The report is presented by Kostyleva Daria ^{a,b} a – FLNR JINR b – Dubna University

Introduction

Investigation and studies of exotic nuclei

• Exotic nuclei are located far from beta stability valley and close to neutron and proton drip lines*

• Unusual characteristics comparing to the ones of the nuclei in the stability valley.

* Drip line - near the proton or neutron drip lines the separation energy of a nucleon comes close to zero value, becomes negative at some point and nucleon "drips" out of the nucleus.

Report content

- Problems of exotic nuclei
- Separation techniques
- ACCULINNA @ FLNR JINR
- ACCULINNA-2 @ FLNR JINR
- Conclusions

- Nucleon halos
- Exotic decays
- Soft excitation modes
- Shell breakdown

Other halo nuclei: ⁶He, ⁸He, ¹¹Be, ¹⁴Be, ¹⁷B, ¹⁹B, ¹⁹C, etc.

- Nucleon halos
- Exotic decays: possible 2n and 4n radioactivity
- Soft excitation modes
- Shell breakdown

Two-proton radioactivity: discovery in 2002, ⁴⁵Fe

Now are also known: ¹⁹Mg, ⁴⁸Ni, ⁵⁴Zn

- Nucleon halos
- Exotic decays
- Soft excitation modes: low-lying dipole excitations
- Shell breakdown

Other SEM nuclei: ⁶Be

- Nucleon halos
- Exotic decays
- Soft excitation modes
- Shell breakdown

¹¹Be predicted to have 1/2⁻ But it is 1/2⁺

- Nucleon halos
- Exotic decays
- Soft excitation modes
- Shell breakdown

In order to study these we need Radioactive Ion Beams (RIBs)!!!

In-Flight method is faster, but requires additional beam diagnostics!

In-Flight
RIB energy ~ 20-35 MeV/A - direct reaction investigations:
Elastic and inelastic scattering
Transfer reactions (d,p), (t,p), (d,3He)
Charge exchange (p,d), (p,t), (3He,d)

•QFS (α,2 α), (α,t α)

- 2n halo configuration in ⁶He (⁶He at 151 MeV, 2n exchange with ⁴He) [Ter-Akopian G et al. Phys Lett. B 426 251 (1998)]
- ⁵H discovery in p(⁶He,2p)⁵H and ground state identification in ³H(³H,p)⁵H [Golovkov M S et al. Phys. Rev. C 72 064612 (2005)]
- The lowest resonant state of ⁹He at energy ~ 2 MeV (1/2⁻) above ⁸He+n threshold in ²H(⁸He,p)⁹He at 25 MeV/nucleon [Golovkov M S et al. Phys. Rev. C 76 021605(R) (2007)]
- The ground state of ¹⁰He at energy ~ 2.1 MeV (0⁺) in ³H(⁸He,p)¹⁰He [Sidorchuk S I et al. Phys. Rev. Lett/ 108 202502 (2012)]

- 2n halo configuration in ⁶He (⁶He at 151 MeV, 2n exchange with ⁴He) [Ter-Akopian G et al. Phys Lett. B 426 251 (1998)]
- ⁵H discovery in p(⁶He,2p)⁵H and ground state identification in ³H(³H,p)⁵H [Golovkov M S et al. Phys. Rev. C 72 064612 (2005)]
- The lowest resonant state of ⁹He at energy ~ 2 MeV (1/2⁻) above ⁸He+n threshold in ²H(⁸He,p)⁹He at 25 MeV/nucleon [Golovkov M S et al. Phys. Rev. C 76 021605(R) (2007)]
- The ground state of ¹⁰He at energy ~ 2.1 MeV (0⁺) in ³H(⁸He,p)¹⁰He [Sidorchuk S I et al. Phys. Rev. Lett/ 108 202502 (2012)]

- 2n halo configuration in ⁶He (⁶He at 151 MeV, 2n exchange with ⁴He) [Ter-Akopian G et al. Phys Lett. B 426 251 (1998)]
- ⁵H discovery in p(⁶He,2p)⁵H and ground state identification in ³H(³H,p)⁵H [Golovkov M S et al. Phys. Rev. C 72 064612 (2005)]
- The lowest resonant state of ⁹He at energy ~ 2 MeV (1/2⁻) above ⁸He+n threshold in ²H(⁸He,p)⁹He at 25 MeV/nucleon [Golovkov M S et al. Phys. Rev. C 76 021605(R) (2007)]
- The ground state of ¹⁰He at energy ~ 2.1 MeV (0⁺) in ³H(⁸He,p)¹⁰He [Sidorchuk S I et al. Phys. Rev. Lett/ 108 202502 (2012)]

- 2n halo configuration in ⁶He (⁶He at 151 MeV, 2n exchange with ⁴He) [Ter-Akopian G et al. Phys Lett. B 426 251 (1998)]
- ⁵H discovery in p(⁶He,2p)⁵H and ground state identification in ³H(³H,p)⁵H [Golovkov M S et al. Phys. Rev. C 72 064612 (2005)]
- The lowest resonant state of ⁹He at energy ~ 2 MeV (1/2⁻) above ⁸He+n threshold in ²H(⁸He,p)⁹He at 25 MeV/nucleon [Golovkov M S et al. Phys. Rev. C 76 021605(R) (2007)]
- The ground state of ¹⁰He at energy ~ 2.1 MeV (0⁺) in ³H(⁸He,p)¹⁰He [Sidorchuk S I et al. Phys. Rev. Lett/ 108 202502 (2012)]

- 2n halo configuration in ⁶He (⁶He at 151 MeV, 2n exchange with ⁴He) [Ter-Akopian G et al. Phys Lett. B 426 251 (1998)]
- ⁵H discovery in p(⁶He,2p)⁵H and ground state identification in ³H(³H,p)⁵H [Golovkov M S et al. Phys. Rev. C 72 064612 (2005)]
- The lowest resonant state of ⁹He at energy ~ 2 MeV (1/2⁻) above 8He+n threshold in ²H(⁸He,p)⁹He at 25 MeV/nucleon [Golovkov M S et al. Phys. Rev. C 76 021605(R) (2007)]
- The ground state of ¹⁰He at energy ~ 2.1 MeV (0⁺) in ³H(⁸He,p)¹⁰He [Sidorchuk S I et al. Phys. Rev. Lett/ 108 202502 (2012)]

the results of ACCULINNA scientific group are accepted by the international scientific community!

Continue of investigations? ACCULINNA-2!

New coming facility ACCULINNA-2 is going to move toward lower energies to facilitate complete kinematics measurements resulting in the observation of very clean, background-free spectra of nuclei lying in the region and beyound the neutron and proton driplines.

ACCULINNA-2

ACCULINNA-2: planned and now

ACCULINNA-2 father development

- Zero-angle spectrometer (dipole magnet D3) to separate secondary beam from the projectilelike reaction products
- RF-kicker the velocity filter aimed to purify proton-rich RIBs
- Accelerator upgrade increase intensity/energy of primary beam

ACCULINNA-2 father development

- Zero-angle spectrometer (dipole magnet D3) to separate secondary beam from the projectilelike reaction products
- RF-kicker the velocity filter aimed to purify proton-rich RIBs
- Accelerator upgrade increase intensity/energy of primary beam

ACCULINNA-2 father development

- Zero-angle spectrometer (dipole magnet D3) to separate secondary beam from the projectilelike reaction products
- RF-kicker the velocity filter aimed to purify proton-rich RIBs
- Accelerator upgrade increase intensity/energy of primary beam

ACCULINNA-2 start up research program

1. Neutron haloes.

Detailed study of the excitation spectra of ¹³Be, ¹⁴Be and heavy carbon nuclei ¹⁹C, ²⁰C, ²¹C via transfer reactions in complete kinematic measurements.

2. Nuclei close to the doubly magic ²⁴O.

- **Transfer reactions (t,p), (d,p), (p,²He), (d,³He) and charge-exchange reactions (d,2p), (t,³He)**
- 3. Proton drip-line nuclei in vicinity of atomic numbers Z = 10 20.

Conclusions

 The ACCULINNA-2 facility is planned to occupy a specific "ecological niche" among the world leading facilities providing the unique opportunities for RIBs investigations.

