Physics of exotic nuclei

Vratislav Chudoba

FLNR JINR

Atom

Atom

Nucleus

- ensemble of protons and neutrons
- mass ~ 10⁻²⁷ 10⁻²⁶ kg (tens of GeV)
- size of atom:
 ~ 10⁻¹⁰ m
- size of nucleus:

~ 10⁻¹⁵ m

Nucleus

- ensemble of protons and neutrons
- mass ~ 10⁻²⁷ 10⁻²⁶ kg (tens of GeV)
- size of atom:
 ~ 10⁻¹⁰ m
- size of nucleus:
 ~ 10⁻¹⁵ m

Nucleus

- ensemble of protons and neutrons
- mass ~ 10⁻²⁷ 10⁻²⁶ kg (tens of GeV)
- size of atom:
 ~ 10⁻¹⁰ m
- size of nucleus:
 ~ 10⁻¹⁵ m

Why exotic?

- far from stable nuclei
- complicatedly available

too heavy or strange in other way

Периодическая таблица элементов Д.И. Менделеева D.I. Mendeleev's Periodic Table of Elements

дон	Ц		группы элементов																						
dan	5d	a	Iб	a	II	б	a	III	ба	I	б	a	V	б	a	VI	б	a	VII	б	a	VIII	б		
1	I	Водород H 1,00794 Hydroger	1 1s ¹						*												Гелий Не 4,0026 Helium	$\frac{2}{1s^2}$			
2	п	Литий Li 6,941 Lithium	3 2s'	Бериллий Be 9,012182 Beryllium	4 2s ²		Eop B 10,811 Boron	5 2p'	Уп (12 Ca	repog 011 rbon	6 2p ²	Asor N 14,00674 Nitrogen	7 2p ³		Кислород О 15,9994 Охудеп	8 2p ⁴		Фтор F 18,998403 Fluorine	9 2p ⁵		Неон Ne 20,1797 Neon	10 2p ⁶		Водород 1 Н 1s ¹	
3	ш	Harpuii Na 22,98976 Sodium	11 3s' 8	Marunii Mg 24,3050 Magnesiur	12 3s ²		Anomenei Al 26,981539 Aluminum	" 13 3p'	Kp S 28 Sil	смний 1 0855 icon	1 4 3p ²	Φοςφορ P 30,973762 Phosphorus	15 3p ³		Cepa S 32,066 Sulfur	16 3p ⁴		Xnop Cl 35,4527 Chlorine	17 3p ⁵		Аргон Ar 39,948 Argon	18 3p ⁶		Нуdrogen	электронная конфигурация / electronic configuration ная масса / atomic mass
4	IV	Kanni K 39,0983 Potassiun	19 4s'	Kamaunit Ca 40,078 Calcium	20 4s ²			21 Ckan 3d ¹ 4s ² 44,95 Scan	CONTRACTOR	2	22 d ² 4s ² Ті 47,88 Titanium		23 3d ³ 4s ²	Ванадий V 50,9415 Vanadium		24 3d ³ 4s ¹	Xpom Cr 51,9961 romium		25 M	Mapraneu Mn 54,93805 anganese		26 3d ⁶ 4s ²	железо Fe 55,847 Iron	27 3d ⁷ 4s ² Со 58,93320 Соbalt	28 3d ⁸ 4s ² Ni 58,6934 Nickel
	v		29 3d ¹⁰ 4s ¹ Cu 63,546 Copper		30 3d ¹⁰ 4s ²	Ihras Zn 65,39 Zinc	Gallium	31 4p'	Tep (72, Ge	банний Ge 61 maanium	32 4p ²	Mammark As 74,92159 Arsenic	33 4p ³		Селен Se 78,96 Selenium	34 9,7 4p ⁴	5238	Бром Br 79,904 Bromine	35 4p ⁵		Криштон Kr 83,80 Krypton	36 4p ⁶		S-ЭЛЕМЕНТЫ/	ELEMENTS
5	VI	PyGranik Rb 85,4678 Rubidium	37 5s'	Стронций Sr 87,62 Strontium	38 5s ²			39 4d ¹ 5s ² 88,9 Ytt	Y 585 fum	4	10 d ² 5s ² Zr 91,224 Zirconium		41 4d ⁴ 5s ¹	Huofuli Nb 92,90638 Niobium		42 ^{Me} 4d ⁵ 5s ¹	олибден Mo 95,94 bdenum		43 4d ⁵ 5s ² Te	Гехнеций Tc [98] chnetium		44 4d ⁷ 5s ¹	Рутений Ru 101,07 athenium	45 4d ⁸ 5s ¹ Rh 102,90550 Rhodium	46 ^{Палладий} 4d ¹⁰ Рd 106,42 Palladium
	VII		47 4d ¹⁰ 5s ¹ Ag 107,8682 Silver		48 4d ¹⁰ 5s ²	Kagsonii Cd 112,411 Cadmium	Hugasik In 114,818 Indium	49 5p ¹		n 5	5 0 p ²	Сурьма Sb 121,757 Antimony	51 5p ³		Tennyp Te 127,60 Tellurium	52 5p ⁴		Иод I 126,90447 Iodine	53 5p ⁵		Ксенон Хе 131,29 Хепоп	54 5p ⁶		🔜 d-элементы 💼 f-элементы	
6	vш	Цезий Сс 132,9054. Сезіцт	55 6s'	Барий Ва 137,327 Вагіцт	56 6s ²			57 5d ¹ 6s ² I 138,5 Lantha	18 18 1055 num	5	72 d ² 6s ² Hff 178,49 Hafnium		73 5d ³ 6s ²	Taerran Ta 180,9479 Tantalum		74 ^{Bo} 5d ⁴ 6s ²	льфрам W 183,84 ungsten		75 5d ³ 6s ²	Рений Re 186,207 Rhenium		76 5d ⁶ 6s ²	Осмий OS 190,23 Osmium	77 ^{Ирядий} 5d ⁷ 6s ² Ir 192,22 Iridium	78 5d ⁹ 6s ¹ Pt 195,08 Platinum
	IX		79 301070 5d ¹⁹ 6s ¹ Au 196,96654 Gold		80 5d ¹⁰ 6s ²	Piyrs Hg 200,59 Mercury	Tanuni Tl 204,3833 Thallium	81 6p'	Ca P 207 Les	b b b d	3 2 6p ²	Висмут Ві 208,98037 Bismuth	83 6p ³		Polonium	84 6p ⁴	*	Actar At [210] Astatine	85 6p ^s		Радон Rn [222] Radon	86 6p ⁶			
7	x	Франций Fr [223] Francium	87 4,973 78 ¹	Paunii Ra 226,025 Radium	88 7s ²			89 Axtra 6d ¹ 7s ² A Actin	HHÌR C 227] Jum	10	14 Pesepipoputä Rf [261] Rutherfordium		105	Дубний Db [262] Dubaium		106 Ca Seat	боргий Sg [266] xorgium		107	Борий Bh [267] Bohrium		108	Хассий HS [269] Hassium	109 ^{Мейтнерий} Мt [268] Meitnerium	110 Дармштадтий Ds [269] Darmstadfium
	XI	1	Pentmennik Rg [272] Rcentgenium	1	12 K	(285)		113	Φ F	еровий l	114		115		Ливермо Lv Livermor	^{рий} 1	16		117			118			
Лантаноиды Lanthanides																									
Церий Се 4f'5d' 140,115 Cerium		Празеодим Pr. 4f ⁴ 140,90765 Prascodymium		Неодим Про Nd 4f ⁴ P1 144,24 [145 Neodymium Prom		Проме Pm [145] Promethi	тий 4f ^s um	Самарий Sm 4 150,36 Samarium	Самарий Sm 41 ⁶ 150,36 Samarium		Европий Eu 4f [°] I51,965 Europium		Гадолиний Gd 4f ⁹ 5d ⁴ 157,25 Gadolinium		Тербий Tb 41 ⁴ 158,92534 Terbium		Диспрознй Dy 4f ¹⁰ 162,50 Dysprosium		Гольмий Но 41 ⁰¹ 164,93032 Holmium		Эрбий Er 4f ¹² Егрішт		Тулий Tm 4 168,93421 Thulium	Иттербий Ybb 4f ¹⁴ 173,04 Ytterbium	Лютеций Lu 4f ¹⁴ 5d ¹ 174,967 Lutetium
AKT	ноид	ĮЫ	Actinides																1						
Торий Th 7s ² 6d ² 232,0381 Thorium		Протактиний Pa 5f°6d' 231,03588 Protactinium		Уран H U 51 ³ 6d ¹ П ^{238,0289} Ц Uranium 8		Henryn Np [237] Neptania	ний 5f'6d' m	Плутоний Pu 51 ⁶ [244] Plutonium		Amepi An [243] Americ	Америций Am 5f [°] [243] Americium		Кюрий Cm 51 [°] 6d [°] [247] ^{Curium}		Берклий Bk 5f [°] [247] Berkelium		Калифорний Cf 5f ¹⁰ [251] Californium		Эйнштейний Es 5f ¹¹ [252] Einsteinium		Фермий Fm 5f ¹² [257] Fermium		Менделе Md 5 [258] Mendeleviu	вий Нобелий f ¹³ NO 5f ¹⁴ m Nobelium	Лоуренсий Lr 5f ¹⁴ 6d ¹ [262] Lawrencium

The same Periodic table of elements

Fields of interest

Superheavy elements

Island of stability...

...and to the Island of Stability

synthesis of superheavies

$$Z_1 + Z_2 = Z$$

 $N_1 + N_2 = N + (2 - 4)n$

"cold" fusion: Pb + heavy ion "hot" fusion: light beam + heavy target

- low-energy physics
- compound nucleus
- combination of light and heavy nuclei gives higher cross sections

Scale of inelasticity

Superheavy elements

Superheavies in 2000

Superheavies in 2015

Spectroscopy of superheavies

Mass spectrometry of superheavies

Superheavy elements factory Current state of FLNR

Superheavy elements factory Full-scale realization off the DRIBs-III

Dubna Radioactive Beams

Light exotic nuclei

Light exotic nuclei

- **light:** let's say Z = 1 − 20
- exotic: close to the "drip-lines"
- large excess of protons or neutrons
- many interesting effects

First observation of ⁶He

T. Bjerge. Radio-Helium. NATURE, 137, 865, 138:400–400, **1936**!!!

Observation of large ⁶He radius

I. Tanihata et al., Physics Letters B, 160(6):380– 384, 1985.

Drip-line

- boundary of nuclear stability
- immediate emission of nucleon

Nuclear halo

Nuclear halo

¹¹Li

²⁰⁸Pb

tunneling to the forbidden regions

- extended size of nucleus
- strange spatial distribution

B. Jonson P.G. Hansen. The Neutron Halo of Extremely Neutron-Rich Nuclei. Europhys. Lett., 4(4):409–414, **1987**

Nuclear halo

Stable nuclei

 $< r_n^2 >^{1/2} - < r_n^2 >^{1/2} \approx 0.1 fm$

Exotic nuclei

$$< r_n^2 >^{1/2} - < r_p^2 >^{1/2} \gtrsim 1.5 fm$$

neutron halo

one neutron: ¹¹Be, ¹⁹C two neutron: ⁶He, ¹¹Li, ¹⁷B, ¹⁹B, ²²C neutron skin: ⁸He and ¹⁴Be

proton halo

g.s. of ⁸B, ¹³N, ¹⁷Ne, ²⁶P, ²⁷S the first e.s. of ¹⁷F

Borromean nuclei

Soft dipole mode (SDM) of Giant dipole resonance (GDR)

GDR

- protons vs. neutrons
- E_{GDR} ~ 14 24 MeV
- induced by EM excitation

- halo vs. core
- E_{SDM} lower than E_{GDR}
- induced by EM excitation and chargeexchange reaction

Excitation energy

Dipole modes

resonance vs.

mode

- property of particular nucleus
- its population does not depend on reaction mechanism

- characteristic for specific reaction
- its population is given by reaction mechanism

3-body systems

2-body vs. 3-body decay

- 2 parameters for 2-body decay (E,Γ)
- 5 additional parameters at given energy for 3-body decay

Correlations

• full description of the internal correlations by parameters ε and θ_{k}

$$\varepsilon = \frac{E_x}{E_x + E_y}$$

$$\cos \theta_k = \frac{\mathbf{k}_x \cdot \mathbf{k}_y}{k_x k_y}$$

external correlations:
 3-body system
 orientation

Correlations

• full description of the internal correlations by parameters ε and θ_{k}

External correlations

- useful when a few overlapping states present
- total angular momentum is determined by emission angle of the core

Legendre polynomials can be visible

Correlations: examples

Correlation study of ¹⁰He

- J^{π} of the ground state confirmed by the experimental data analysis
- J^{π} of the **1**⁻ states determined from experimental data for the first time

Decays

α decay E. Rutherford, 1899

β⁻ decay H. Becquerel, 1886

β⁺ decay
F. and I. Joliot-Curie, 1932

p radioactivity S. Hoffman, 1982 **2p radioactivity** M. Pfutzner, 2002 neutron radioactivity still waiting

Proton radioactivity

of α -radiactivity

mechanical

Proton radioactivity

Instrumentation

Radioactive ion beams

acceleration of a primary beam (I~10¹² pps)

Radioactive ion beams

acceleration of a primary beam (I~10¹² pps)

ISOL technique

- reactions in a thick production target: (fast production – slow release)
- reaction products to be extracted, ionized and reaccelerated
- secondary beam: (I<10⁸ pps)

secondary beam: fragment-separator (I<10⁶ pps)

reactions on a physical target

Modest vs. big, bigger, the biggest

ACCULINNA

ACCULINNA-2

- energy range 6 60 MeV/A
- beam intensities higher in 2 orders

•
$$Z_{\rm RIB} \sim 1 - 36$$

Спасибо за внимание!

EXPERT@SuperFRS@FAIR

Appendix: SHE Spectroscopy

Presently Working Experimental Set Ups in the World

SHIP (Darmstadt, Germany) Berkeley Gas Filled Separator (USA) GARIS (Saitama, Japan) VASSILISSA (Dubna, Russia) LISE3 (GANIL, France) **RITU (JYFL, Finland)** FMA (Argonne, USA) JAERI-RMS (Tokai, Japan) TASCA (Darmstadt, Germany)

Spectroscopy studies