Current status of hyperon analysis with PHSD at MPD/NICA

V.Kolesnikov, V.Vasendina, V.Voronyuk, <u>A.Zinchenko</u> for the MPD collaboration VBLHEP, JINR, Dubna, Russia

Senerator: PHSD (V4, 2018-03-06), Au+Au @ 11 GeV, min. bias, 8M events

> **Detectors:** start version of MPD with up-to-date TPC & TOF

Cluster / hit reconstruction: precluster finder (group of adjacent pixels in time bin – pad space); hit finder ("peak-and-valley" algorithm either in time bin – pad space (for simple topologies) or in time-transverse coordinate pixel space after Bayesian unfolding (for more complicated topologies))→ COG around local maxima

Track reconstruction: two-pass Kalman filter with track seeding using outer hits (*1st pass*) or leftover inner hits (*2nd pass*)

- > Track acceptance criterion: $|\eta| < 1.3$, $N_{hits} \ge 10$
- **Particle Identification:** dE/dx in TPC & β in TOF

Analysis goals and Event topology

Goals:

- Secondary Vertex Reconstruction algorithm development for multistrangeness analysis
- Optimization of selection criteria in pT and centrality
- Preparation of analysis macros for invariant spectra reconstruction
- Estimates of MPD efficiency and expected event rates
- Publications with results of the study (supported by a RFBR Grant for 2019-21)

Analysis method: Secondary Vertex Finding Technique

Event topology:

- \succ PV primary vertex
- \succ V₀ vertex of hyperon decay
- \succ dca distance of the closest approach
- path decay length

$\Lambda, \Lambda_{\text{bar}}, \Xi^{-}$ reconstruction and Phase space

A. Zinchenko

p_T dependence of Λ for all centralities

A. Zinchenko

MPD collaboration meeting

Λ reconstruction: efficiency and pT spectrum

Efficiency of true Λ in p_T and b bins for |y| < 0.5: (reco & select Λ) / (all gen Λ)

Reconstructed spectrum: fit of selected Λ in each bin (Gauss $\pm 3\sigma$) / Eff.

Ξ^+ , Ω^- , Ω^+ reconstruction and Phase space

Ω^{-} hyperon: y & p_T dependence

A. Zinchenko

Expected multistrange hyperon yields in minimum bias Au+Au collisions for 2 weeks of running time at starting luminosity.

Particle	$\Xi^{+}_{bar} \rightarrow \Lambda_{bar} + \pi^{+}$	$\Omega^{-} \rightarrow \Lambda + \mathrm{K}^{-}$	$\Omega^+ { ightarrow} \Lambda_{ m bar} + { m K}^+$
Expected yield	$7.2 \ge 10^5$	7.4 x 10 ⁴	2.3 x 10 ⁴

Ξ - reconstruction for QM-2019

dca - distance of the closest approach dist – distance between daughters

This work was supported by the Russian Foundation for Basic Research (RFBR): grant No. 18-02-40060.

- > Multistrange hyperons are reconstructed in min. bias Au+Au at 11 GeV
- > MPD efficiency is estimated in p_T bins for several centrality intervals
- \triangleright Invariant yields of (anti) Λ are obtained for central and peripheral collisions
- > Analysis for Ξ and Ω is ongoing, the latter requires a larger data volume