







# JINR neutrino programme. Daya Bay and JUNO: precision measurements with reactor neutrinos

Maxim Gonchar

Laboratory of Nuclear Problems, JINR

January 16, 2017

#### 1 Neutrino physics and DLNP neutrino programme

#### 2 Daya Bay

#### 3 JUNO

# Neutrino mixing





Weak and mass eigenstates differ:

 $|
u_{lpha}\rangle = \sum U_{lpha i}^{*} |
u_{i}\rangle$  lpha - flavor statesi - mass states

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix:

•  $\theta_{23} \approx 45^{\circ}$  established through atmospheric and accelerator experiments:

possibly maximal.

•  $\theta_{12} \approx 12^{\circ}$  established through solar experiments and KamLAND:

large but not maximal.

•  $\theta_{13} \approx 8^{\circ}$  established by reactor and accelerator experiments:

Daya Bay, RENO, Double CHOOZ, T2K and MINOS.

## Neutrino mass





Mixing parametrized by three mixing angles:  $\theta_{12}, \theta_{23}, \theta_{13}.$ 

#### Neutrino mass

- Neutrinos are massive
- Neutrino mass has not been measured
- $\sum m_{
  u} \lesssim 1 \, {
  m eV}$  (cosmology)
- $\blacksquare \ m_e < 2.2 \, \text{eV} \tag{direct}$
- $\langle m_{\beta\beta} \rangle < 0.25 \, \text{eV}$   $(0 \nu \beta \beta)$

# Mass splitting

From oscillation experiments:

- $\Delta m^2_{21} = (7.53 \pm 0.18) \times 10^{-5} \, \mathrm{eV}^2$
- $\left|\Delta m_{32}^2\right| = (2.42 \pm 0.06) \times 10^{-3} \, {\rm eV}^2$
- $\blacksquare \left| \Delta m_{32}^2 \right| / \Delta m_{21}^2 \sim 32$

# Mass hierarchy

Which neutrino is the lightest one:  $\nu_1$  or  $\nu_3$ ?

# Open neutrino questions

- Lightest neutrino mass.
- Neutrino mass hierarchy (MH)?
- Is there CP-violation?  $\delta_{CP}$  value?
- $\theta_{23}$  octant?
- Dirac or Majorana?  $0\nu\beta\beta$ ?
- Unitarity of neutrino mixing matrix? Sterile neutrinos?
- Non-standard interactions (NSI)? Lorentz violation?
- Origin of UHE neutrinos.
- Relic neutrinos.
- Diffuse Supernova neutrinos.
- Solar CNO neutrinos.
- Others...



 $\hookrightarrow$  probably, non-maximal.



# DLNP neutrino program.



# $0\nu\beta\beta$ : Dirac or Majorana?

SuperNEMO

#### GERDA

# Astrophysical, atmospheric, solar and geo- neutrinos

- BAIKAL GVD: Astrophysical and atmospheric neutrino.  $\theta_{23}$ ,  $\Delta m_{32}^2$ . Rich potential.
- BOREXINO: Solar, geo-neutrino, matter effects,  $\theta_{12}$ ,  $\Delta m_{21}^2$ , rare processes.

# Accelerator (anti)neutrinos

- **NO** $\nu$ A: Neutrino mass hierarchy.  $\Delta m_{32}^2$ ,  $\theta_{23}$ .
- OPERA:  $\nu_{\tau}$  appearance.  $\theta_{23}$ ,  $\Delta m_{32}^2$ .

# Reactor and $\beta$ -decay antineutrinos

- DANSS: Sterile neutrino, reactor antineutrino spectrum, reactor monitoring.
- **GEMMA-2**:  $\mu_{\nu}$  anomalous neutrino magnetic moment.
- *v*GEN: Coherent Neutrino Germanium Nucleus Elastic Scattering.
- SOX (post BOREXINO): Radioactive source. Sterile neutrino search.
- **Daya Bay**:  $\theta_{13}$ ,  $\Delta m_{32}^2$ , sterile neutrino, reactor flux measurement.
- **JUNO**: Mass hierarchy, precise  $\theta_{12}$ ,  $\Delta m_{21}^2$ ,  $\Delta m_{32}^2$ ; SN neutrinos, geo-neutrinos.

Neutrino physics and DLNP neutrino programme Daya Bay JUNO

# Neutrino oscillations experiments complementarity





1 Neutrino physics and DLNP neutrino programme

#### 2 Daya Bay

#### 3 JUNO

Neutrino physics and DLNP neutrino programme Daya Bay JUNO

# Reactor electron anti-neutrino disappearance





$$\begin{split} 1 - P_{\nu_e \to \nu_e} &\approx \frac{\sin^2 2\theta_{13} \sin^2 \Delta_{32}}{4} + \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21} \\ \Delta_{jk} &= 1267 \cdot \frac{\Delta m_{jk}^2}{eV^2} \frac{L}{E} \left[ \frac{\text{MeV}}{\text{km}} \right] \end{split}$$

Maxim Gonchar (DLNP)

Neutrino physics and DLNP neutrino programme Daya Bay JUNO



Maxim Gonchar (DLNP)

# Antineutrino detection



| 3-zone antineutrino detector (AD):                                                                                                   |                        |             |  |
|--------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------|--|
| Inner zone                                                                                                                           | 20 t                   | Gd-doped LS |  |
| Middle zone                                                                                                                          | 20 t                   | LS          |  |
| Outer zone                                                                                                                           | 40 t                   | Mineral oil |  |
| ν <sup>¯</sup> ν <sub>α</sub><br><sup>ν</sup> <sup>ε</sup><br><sup>ν</sup> <sub>α</sub><br><sup>ν</sup><br><sup>ν</sup> <sub>α</sub> | ۲.<br>× E <sub>2</sub> | 1 Mer       |  |



# Antineutrino detection







# Antineutrino detection







# Data periods and publications





 Days
 Sterile
 Reactor
 Wave packets

 217
 PRL[1407.7259]
 PRL[1508.04233]

 621
 PRL[1607.01177]

 621
 PRL[1607.01177]

- 2AD comparison
- Muon system
- Detector

NIM[1202.6181] NIM[1407.0275] NIM[1508.03943]



# Daya Bay oscillation result





Maxim Gonchar (DLNP)

Daya Bay&JUNO

# Daya Bay oscillation result





# Summary

- ✓ Absolute reactor antineutrino flux measurement:  $\sim$  5% deficit.
- ✓ Reactor antineutrino spectrum shape measurement:

significant spectral distortion around 5 - 6 MeV.

- ✓ Stringent limits for sterile neutrinos for  $2 \cdot 10^{-4}$  eV<sup>2</sup> <  $\Delta m_{41}^2 \lesssim 2$  eV<sup>2</sup>.
- ✓ First experimental constraint on neutrino wave-packet size:
- In SuperNova Early Warning System since end of 2014.
- More physics analyses under preparation:
  - Lorentz/CPT invariance
  - Muon modulation
  - Neutron yield
  - Combined analysis with RENO and Double-CHOOZ experiments.

Dava Bav&JUNO

- Others...

New publications: 1603.03549 PRD

1607.01174 PRL

1607.01177 PRL 1607.05378 CPC

1608.01661 EPJC 1610.04802 PRD

stay tuned...

 $\sigma_{\rm x} > 10^{-11}$  cm at 95% C.L.



#### 1 Neutrino physics and DLNP neutrino programme

2 Daya Bay

#### 3 JUNO

## Neutrino mass





Mixing parametrized by three mixing angles:  $\theta_{12}, \theta_{23}, \theta_{13}.$ 

#### Neutrino mass

- Neutrinos are massive
- Neutrino mass has not been measured
- $\sum m_{
  u} \lesssim 1 \, {
  m eV}$  (cosmology)
- $\blacksquare \ m_e < 2.2 \, \text{eV} \tag{direct}$
- $\langle m_{\beta\beta} \rangle < 0.25 \, \text{eV}$   $(0 \nu \beta \beta)$

# Mass splitting

From oscillation experiments:

- $\Delta m^2_{21} = (7.53 \pm 0.18) \times 10^{-5} \, \mathrm{eV}^2$
- $\left|\Delta m_{32}^2\right| = (2.42 \pm 0.06) \times 10^{-3} \, {\rm eV}^2$
- $\blacksquare \left| \Delta m_{32}^2 \right| / \Delta m_{21}^2 \sim 32$

# Mass hierarchy

Which neutrino is the lightest one:  $\nu_1$  or  $\nu_3$ ?

# Neutrino mass hierarchy on reactor experiments





- Picture: ideal energy resolution.
- Unique oscillation panorama at 53 km:  $\sim$  20 oscillation cycles.
- < 1% precision on  $\theta_{12}$ ,  $\Delta m_{21}^2$ ,  $\Delta m_{32}^2$ .
- Required energy resolution  $\lesssim 3\%$ .

# Neutrino mass hierarchy on reactor experiments





- Picture: energy resolution 3%.
- Unique oscillation panorama at 53 km:  $\sim$  20 oscillation cycles.
- < 1% precision on  $\theta_{12}$ ,  $\Delta m_{21}^2$ ,  $\Delta m_{32}^2$ .
- **Required energy resolution**  $\leq 3\%$ .

## Detector requirements



CDR: 1508.07166 Physics: 1507.05613

#### Energy resolution = photon collection (to some extent).

|                                   | KamLAND | JUNO         | Factor |
|-----------------------------------|---------|--------------|--------|
| Target mass (kt)                  | 1       | 20           | 20     |
| Energy resolution $(\%/\sqrt{E})$ | 6       | $\lesssim$ 3 | 0.5    |
| Light yield (p. e.)               | 250     | 1200         | ~5     |
| PMT coverage                      | 34 %    | 75%          | ~2.2   |

# Solutions:

- Use 20", high QE (35%) PMTs
- Use 3" PMTs in between
- No Gd in scintillator
- Optimized fluor concentration
- Attenuation length > 20 m



# JUNO detector



## Challenges

- High QE PMT (~ 35%)
- Highly transparent LS
- Huge detector: 20 kt, Ø34.5 m
- 20k 20" PMTs
- 36k 3" PMTs





Maxim Gonchar (DLNP)

# Civil construction





# JUNO schedule





# JINR contribution



JINR group of JUNO experiment participates in several key tasks:

Powering JUNO:

PMT high voltage R&D

Muon veto:

Opera TT  $\longrightarrow$  precise  $\mu$  detector

Earth Magnetic Field:

PMT protection R&D

PMT testing:

New PMT research lab at DLNP

Liquid scintillator:

purification methods and measurements

- Experiment sensitivity estimation
- MC and data analysis:
  - Hierarchy and oscillations
  - Solar and geo- neutrinos
  - Rare processes





Maxim Gonchar (DLNP)

# PMT lab





# Summary





- JUNO physics program is competitive and complementary!
- Mass hierarchy determination (independent of δ<sub>CP</sub> and θ<sub>23</sub>).
- Probing PMNS matrix unitarity to  $\sim 1\%$  level.
- Precise measurement of neutrino mixing parameters:

- Other physics topics:
  - Supernovae neutrino
  - Solar and geo- neutrino
  - Sterile neutrino
  - Atmospheric neutrino
  - Exotic searches
  - Proton decay
  - Others...

# Backup slides...



# Kaiping country of Jiangmen city



 Nuclear power plants Yang Jiang (17.4 GW<sub>th</sub>) and Taishan (18.4 GW<sub>th</sub>) are under construction.

# JUNO collaboration





#### JUNO

- 398 scientists and engineers
- from 57 institutions

- from Asia, Europe and South America
- including 32 from Russia (23 from JINR)

Maxim Gonchar (DLNP)

Daya Bay&JUNO

### Daya Bay collaboration



#### Asia (23):

Beijing Normal Univ., CGNPG, CIAE, Chinese Univ. of Hong Kong, Chongqing Univ., Dongguan Polytech., ECUST, IHEP, NCEPU, NUDT, Nanjing Univ., Nankai Univ., National Chiao Tung Univ., National Taiwan Univ., National United Univ., Shandong Univ., Shanghai Jiao Tong Univ., Shenzhen Univ., Tsinghua Univ., USTC, Univ. of Hong Kong., Xi'an Jiaotong Univ., Zhongshan Univ.

#### Europe (2) and Sourth America (1):

Charles University, Joint Institute for Nuclear Research, Catholic Univ. of Chile.

#### North America (16)

Brookhaven Natl Lab, Illinois Institute of Technology, Iowa State, Lawrence Berkeley Natl Lab, Princeton, Rensselaer Polytech., Sienna College, Temple Univ., UC Berkeley, Univ. of Cincinnati, Univ. of Houston, UIUC, Univ. Wisconsin, Virginia Tech, William & Mary, Yale.

# Daya Bay sensitivity



 $\sin^2 2\theta_{13}$  sensitivity projection:

 $\Delta m_{ee}^2$  sensitivity projection:



Expect reaching 3% sensitivity on both parameters after 2017.

## Error budget





- sin<sup>2</sup>  $2\theta_{13}$  uncertainty is dominated mostly by statistics and relative efficiency uncertainty.
- $\Delta m_{32}^2$  uncertainty is dominated by statistics and relative energy scale uncertainty.
- Statistics and systematics has almost equal impact on  $\Delta m_{32}^2$  uncertainty.

Maxim Gonchar (DLNP)

Daya Bay&JUNO

## Best fit antineutrino spectrum





- Continuous best fit antineutrino spectrum obtained simultaneously with oscillation parameters is in good agreement with official result.
- The correlation between oscillations and spectral parameters is negligible.

Maxim Gonchar (DLNP)

Daya Bay&JUNO

# Параметризация спектра антинейтрино



Спектр  $\overline{\nu}_e$  от каждого изотопа параметризуется кусочно-гладкой функцией:

$$\begin{split} S_{ij]}\left(E^{\nu}\right) &= n_j k_{ij} e^{-b_{ij} \left(E^{\nu} - E_j^{\nu}\right)}, \\ E_{\nu} &\in \left(E_j^{\nu}, E_{j+1}^{\nu}\right). \end{split}$$



- $k_{ij}$  модельный спектр от изотопа *i* в  $E_i^{\nu}$ .
- n<sub>j</sub> коррелированная поправка для интервала j.
- *b<sub>j</sub>* отношение наблюдаемого среднего спектра антинейтрино к ожидаемому:

$$n(E) = \frac{\langle S(E) \rangle_{\text{obs}}}{\langle S(E) \rangle_{\text{Huber+Mueller}}}.$$

# Параметризация спектра антинейтрино



Спектр  $\overline{\nu}_e$  от каждого изотопа параметризуется кусочно-гладкой функцией:

$$\begin{split} S_{ij]}\left(E^{\nu}\right) &= n_j k_{ij} e^{-b_{ij} \left(E^{\nu} - E_j^{\nu}\right)}, \\ E_{\nu} &\in \left(E_j^{\nu}, E_{j+1}^{\nu}\right). \end{split}$$



- $k_{ij}$  модельный спектр от изотопа *i* в  $E_i^{\nu}$ .
- n<sub>j</sub> коррелированная поправка для интервала j.
- *b<sub>j</sub>* отношение наблюдаемого среднего спектра антинейтрино к ожидаемому:

$$n(E) = \frac{\langle S(E) \rangle_{\text{obs}}}{\langle S(E) \rangle_{\text{Huber+Mueller}}}.$$

# Uncertainties summary



|                     | Detector   |            |              |
|---------------------|------------|------------|--------------|
|                     | Efficiency | Correlated | Uncorrelated |
| Target Protons      |            | 0.92%      | 0.03%        |
| Flasher cut         | 99.98%     | 0.01%      | 0.01%        |
| Prompt energy cut   | 99.8%      | 0.10%      | 0.01%        |
| Delayed energy cut  | 92.7%      | 0.97%      | 0.08%        |
| Capture time cut    | 98.7%      | 0.12%      | 0.01%        |
| Multiplicity cut    |            | 0.02%      | 0.01%        |
| Gd capture fraction | 84.2%      | 0.95%      | 0.10%        |
| Spill-in            | 104.9%     | 1.00%      | 0.02%        |
| Livetime            | 100.0%     | 0.002%     | 0.01%        |
| Combined            | 80.6%      | 1.93%      | 0.13%        |

| Reactor                       |      |                  |      |
|-------------------------------|------|------------------|------|
| Correlated                    |      | Uncorrelated     |      |
| Energy/fission                | 0.2% | Power            | 0.5% |
| $\overline{\nu}_{e}$ /fission | 3%   | Fission fraction | 0.6% |
|                               |      | Spent fuel       | 0.3% |
| Combined                      | 3%   | Combined         | 0.8% |

- Only uncorrelated uncertainties are relevant for Near/Far oscillation analysis.
- Largest systematics smaller than Far site statistics (~1%).

 Influence of uncorrelated reactor systematics is reduced by far/near measurement.

# Antineutrino rates (621 days)





- More than 1M neutrino interactions
- Detected rate correlates with reactor flux expectations.
- Normalization is determined by data fit.

## IBD selection criteria



#### Inverse beta decay:

- $\blacksquare \ \overline{\nu}_e + p \longrightarrow e^+ + n$
- $\blacksquare \sim 28 \ \mu s: \ n + Gd \longrightarrow Gd^* \longrightarrow Gd + \sum \gamma \ (8 \ \text{MeV})$

Selection:

- Reject spontaneous PMT light emission (99.98%).
- 2. Prompt energy (positron): 0.7 MeV  $< E_p < 12$  MeV (99.88%).
- Delayed energy (neutron capture): 6 MeV < E<sub>p</sub> < 12 MeV (90.9%).
   </li>
- 4. Neutron capture time:  $1 \ \mu s < \Delta t < 200 \ \mu s$  (98.6%).
- 5. Reject muons:
  - Water pool muons Nhits>12: 0.6 ms
  - AD muons with E>12 MeV: 1 ms
  - AD shower muon E>2.5 GeV: 1 s
- 6. Multiplicity: no other signal with E > 0.7 MeV in  $\pm 200 \ \mu s$  of IBD



# Side-by-side Comparison



#### 1230 days, arXiv:1610.04802 $\rightarrow$ PRD

- One of the most significant improvements was the reduction of the relative detection efficiency uncertainty from 0.2% to 0.13%.
- Side-by-side rates are consistent with expectations:



•  $\sin^2 2\theta_{13}$  uncertainty is dominated by statistics and relative detection efficiency uncertainty.

Maxim Gonchar (DLNP)

Daya Bay&JUNO

# Calibration





# Relative energy scale uncertainty for nGd analysis: 0.2%.



#### Muon veto system



#### Water pool:

- Shield against the external radioactivity and cosmogenic background.
- Cherenkov muon tracker.
- 288 8" PMTs in each Near Hall.
- 384 8" PMTs in each Far Hall.
- Outer water shield (1 m).
- Inner water shield (>2.5 m).
- 4-layer RPC veto:
  - Muon tracker.
  - 54 modules in each Near Hall.
  - 81 modules in the Far Hall.
- Goal efficiency 99.5% with uncertainty < 0.25%.



#### Experimental hall 1





#### Experimental hall 3





#### Inside the AD





# Background summary



|                                    | Near Halls<br>B/S, % | Far Hall<br>B/S, % | Uncertainty                | Estimation method                                                                          |
|------------------------------------|----------------------|--------------------|----------------------------|--------------------------------------------------------------------------------------------|
| Accidentals                        | 1.4                  | 2.3                | $\sim 1\%$                 | Calculated based on uncorrelated signals                                                   |
| <sup>9</sup> Li/ <sup>8</sup> He   | 0.4                  | 0.4                | 50%                        | Measured with after-muon events                                                            |
| Fast neutrons                      | 0.1                  | 0.1                | 50%                        | Measured with tagged muon events                                                           |
| <sup>241</sup> Am- <sup>13</sup> C | 0.03                 | 0.2                | 50%                        | MC, benchmarked with single $\gamma$ and strong $^{241}\mathrm{Am}^{-13}\mathrm{C}$ source |
| ${}^{13}C(\alpha, n){}^{16}O$      | 0.01                 | 0.1                | 50%                        | Calculated from measured radioactivity                                                     |
|                                    | Drompt energy [MeV]  | 2 4 6 8            | 10 12 14 16<br>Delayed enc | 10 <sup>4</sup><br>10 <sup>3</sup><br>10 <sup>2</sup><br>10<br>10<br>10<br>rgy [MeV]       |

#### Far vs. near comparison



#### 1230 days, arXiv:1610.04802, PRD



The observed **event rate deficit** and **relative spectrum distortion** are highly consistent with oscillation interpretation.



# Independent nH oscillation analysis

#### 621 days, arXiv:1603.03549, PRD

Key points:

- ✓ Additional statistics (+20 ton/AD)
- ✓ Largely independent systematics
- ✗ Lower delayed energy (∼2.2 MeV)
- X More accidentals
- × Loosely defined fiducial volume

# nΗ

 $\sin^2 2\theta_{13} = 0.071 \pm 0.011$ 

nH+nGd

 $\sin^2 2\theta_{13} = 0.082 \pm 0.004$ 

- Observed significant rate deficit.
- Spectral distortion consistent with oscillations.
- Third world precise measurement after Daya Bay (nGd) and RENO (nGd).







January 16, 2017

Maxim Gonchar (DLNP)

## Absolute reactor antineutrino flux

#### 621 days, arXiv:1607.05378→CPC

- Consistent between ADs
- Consistent with world average
- Supports reactor anomaly existence

# Huber+Mueller

Data/prediction:  $0.946 \pm 0.020$ 

#### ILL+Vogel

Data/prediction:  $0.992 \pm 0.021$ 

# Huber+Mueller (global)

Data/prediction:  $0.943 \pm 0.008$  (exp)  $\pm 0.023$  (model)





## Reactor antineutrino spectrum



#### Observed positron spectrum



- Bump feature around 5–6 MeV.
- Consistent with other experiments.
- Seen for both Huber+Mueller/ILL+Vogel.

## Extracted antineutrino spectrum



## Light sterile neutrino search

#### 217 days, arXiv:1407.7259, PRL

- Sterile neutrino will cause spectral distortions at the near and far sites.
- Relative measurement independent of reactor related systematics.
- Result is consistent with 3-flavor oscillations.







## Light sterile neutrino search

#### 621 days, arXiv:1607.01174, PRL

- Sterile neutrino will cause spectral distortions at the near and far sites.
- Relative measurement independent of reactor related systematics.
- Result is consistent with 3-flavor oscillations.







# Light sterile neutrino search with Bugey-3 and MINOS

#### 621 days, arXiv:1607.01174, PRL

- Combining Daya Bay and Bugey-3 data strongly constrains  $\Delta m_{41}^2$  and  $\sin^2 2\theta_{41}$ .
- Combining Daya Bay and Bugey-3 and MINOS data allows to constrain  $\Delta m_{41}^2$  and sin<sup>2</sup>  $2\theta_{41} \sin^2 2\theta_{42}$ .
- Joint analysis strongly suggests that LSND results is not due to sterile neutrino.





# Light sterile neutrino search with Bugey-3 and MINOS

621 days, arXiv:1607.01174, PRL

+MINOS, arXiv:1607.01177, PRL

- Combining Daya Bay and Bugey-3 data strongly constrains  $\Delta m_{41}^2$  and  $\sin^2 2\theta_{41}$ .
- Combining Daya Bay and Bugey-3 and MINOS data allows to constrain  $\Delta m_{41}^2$  and sin<sup>2</sup> 2 $\theta_{41}$  sin<sup>2</sup> 2 $\theta_{42}$ .
- Joint analysis strongly suggests that LSND results is not due to sterile neutrino.





## Wave packet effects



621 days, arXiv:1608.01661→EPJC

The obtained limits read

 $2.38 \cdot 10^{-17} < \sigma_{\rm rel} < 0.23,$ 

taking into account the reactor/detector sizes:

 $10^{-11} ext{ cm } \lesssim \sigma_x \lesssim 2m.$ 

• These results ensure unbiased measurement of  $\sin^2 2\theta_{13}$  and  $\Delta m_{32}^2$  within the PW model.



# Flashers identification





Flashers — PMTs spontaneously emitting light:

- $\blacksquare \sim 5\%$  of PMTs
- $\blacksquare \sim 5\%$  of the events
- Rejected based on the topology

$$\begin{split} & d_{max} = Q_{max}/Q_{sum} \\ & d_{quad} = Q_3/(Q_2 + Q_4) \\ & \mathsf{FID} = \log_{10}\left[\left(\frac{d_{quad}}{1}\right)^2 + \left(\frac{d_{max}}{0.45}\right)^2\right] < 0 \end{split}$$

# AD liquids



Target mass:

- Target mass is measured during filling by the load cell with precision of ~ 3kg, 0.015%.
- Cross-checked by the Coriolis meters with precision of 0.1%.
- M<sub>target</sub> = M<sub>fill</sub> M<sub>overflow</sub>



Liquid scintillator composition:

- LAB + Gd (0.1%) + PPO (3 g/L) + bis-MSB (15mg/L)
- One year 1-ton prototype monitoring on GdLS stability.

Liquids storage and filling:

- Fill each AD from all 5 storage tanks.
- Fill ADs in pairs.
- Recirculate storage tanks.

# Trigger

#### Trigger criteria:

- Signal > 0.25 p. e.: ■ Nhit > 45.
  - Esum > 0.4 MeV.
- Water pool:
  - Nhit > 12.

Trigger efficiency:

- Measured from LED light and <sup>68</sup>Ge source.
- No measurable inefficiency above 0.7 MeV.
- Minimal  $E_p \approx 0.95$  MeV.





# Reactor flux expectation



$$S(E) = \frac{W_{\rm th}}{\sum_k f_k E_k} \sum_i f_i S_i(E)$$

Information provided by the NPP:

•  $W_i$  — thermal power.

**f\_i** — relative isotope fission fraction.



Neutrino data:

- *E<sub>i</sub>* energy released per fission:
  - V. Kopeikin, L. Mikaelyan, and V. Sinev, Phys. Atom. Nucl. 67, 1892 (2004).
- $S_i(E)$  antineutrino spectra per fission:
  - W. G. K. Schreckenbach, G. Colvin and F. von Feilitzsch, Phys. Lett. B160, 325 (1985).
  - A. F. von Feilitzsch and K. Schreckenbach, Phys. Lett. B118, 162 (1982).
  - A. A. Hahn et al., Phys. Lett. B218, 365 (1989).
  - P. Vogel, G. K. Schenter, F. M. Mann, and R. E. Schenter, Phys. Rev. C24, 1543 (1981).
  - T. Mueller et al., Phys. Rev. C83, 054615 (2011).
  - P. Huber, Phys. Rev. C84, 024617 (2011) [Erratum-ibid. 85, 029901(E) (2012)].

# Backgrounds: accidentals



Accidental event — two independent signals accidentally satisfy event selection criteria.



- Calculated based on prompt and delayed rates.
- Cross-checks:
  - Prompt-delayed distance distribution.
  - Off-window coincidence.

# Backgrounds: <sup>9</sup>Li/<sup>8</sup>He





Figure

 Calculated by fitting the time-after-last-muon events distribution. Based on known half-life times:

• <sup>9</sup>Li 
$$\lambda = 178ms$$

• <sup>8</sup>He 
$$\lambda = 119ms$$

- Cross-checks:
  - Analyze muon samples with and without followed neutrons.

Maxim Gonchar (DLNP)

Daya Bay&JUNO



Fast neutrons can produce recoil protons, which mimic prompt signal. Neutron capture itself is the delayed signal.



- Method I:
  - Collect events with 12 MeV < E<sub>p</sub> < 100 MeV
  - Extrapolate the spectrum to the *E<sub>p</sub>* < 12MeV</p>
- Method II:
  - Use water pool and RPC to determine the number of fast neutrons.





# Backgrounds: <sup>241</sup>Am-<sup>13</sup>C and <sup>13</sup>C( $\alpha$ , *n*)<sup>16</sup>O



Correlated background from  $^{\rm 241}Am\text{-}^{\rm 13}C$  sources (ACU):

- Neutron inelastic scattering on <sup>56</sup>Fe + neutron capture on Fe/Cr/Mn/Ni.
- Estimated based on simulation.
- Cross checked with data.

Correlated  ${}^{13}C(\alpha, n){}^{16}O$  background:

- <sup>238</sup>U, <sup>232</sup>Th, <sup>227</sup>Ac and <sup>210</sup>Po  $\alpha$  rates are measured.
- Neutron yield is calculated with MC.







Figure: Energy spectrum of the events near the top of ADs in the Far Hall.