Effective neutrino magnetic moment limit from Borexino data

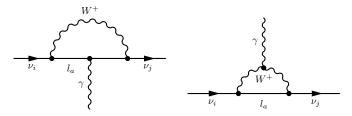
A. Vishneva

JINR Scientific Counsil Feb 23, 2018

Outline

1 Introduction to the neutrino magnetic moment

2 Borexino experiment


Analysis and results

Neutrino magnetic moment in astrophysics

- Spin-flavor rotation caused by μ_{ν} was considered as a possible solution of the solar neutrino problem (still might be a sub-dominant process)
- "confusing 11-year modulation" of solar neutrino flux in Super-Kamiokande data
- Can provide an additional mechanism of star cooling: $\mu_{\nu} < 3.0 \times 10^{-12} \mu_{\rm B}$ at 3σ level from observations of red giants [G.G. Raffelt, Astrophysical Journal, 365, p.559 (1990)]

Neutrino magnetic moment in the Standard Model

occurs at one-loop level (for massive neutrinos only)

proportional to the neutrino mass

$$\mu = \frac{3m_e G_F}{4\pi^2 \sqrt{2}} m_\nu \mu_{\rm B} \approx 3.2 \times 10^{-19} \left(\frac{m_\nu}{1~{\rm eV}}\right) \mu_{\rm B}$$

• changes neutrino helicity (and possibly flavor)

Magnetic moments of mass eigenstates

- dipole moments μ_{11} , μ_{22} , μ_{33}
- transition moments μ_{12} , μ_{23} , μ_{31} ($\mu_{ij}=\mu_{ji}$ if CPT is conserved)

Dirac neutrinos

- ullet all μ_{ij} can be non-zero
- non-diagonal elements are suppressed due to the Glashow-Iliopulos-Maiani mechanism

Majorana neutrinos

- $\mu_{ii} = 0$ under the CPT-conservation
- only transition moments are non-vanishing
- ullet Effective magnetic moment $\mu^{
 m eff}$ is a mixture of mass (flavor) eigenstates which is observed experimentally

How to measure the neutrino magnetic moment?

- ullet $\mu_
 u$ contributes to u-e elastic scattering
- does not interfere with weak interaction contribution (total cross-section is the sum of two)
- cross-section $\frac{\mathrm{d}\sigma_{\mathrm{EM}}(T_e, E_{\nu})}{\mathrm{d}T_e} \propto \mu_{\mathrm{eff}}^2 \left(\frac{1}{T_e} \frac{1}{E_{\nu}}\right) \Rightarrow$ low threshold is needed

JINR participates in:

- GEMMA (KNPP, Russia): μ_{ν_e} , reactor
- BOREXINO (LNGS, Italy): $\mu_{\nu}^{\it eff}$, solar

Borexino detector

```
Location Laboratori Nazionali del Gran Sasso (Italy)
```

Main goal real-time solar neutrino detection in sub-MeV region

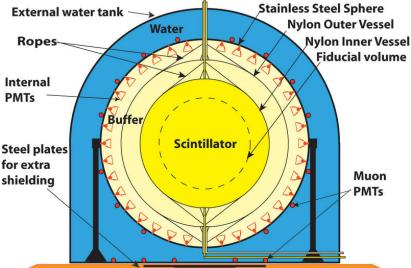
Detection technique $\nu-e$ elastic scattering, inverse β decay (for anti-neutrinos)

Energy threshold on recoil electrons $\sim 200 \text{ keV}$

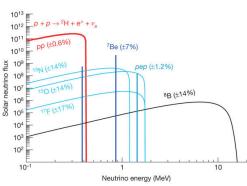
Scintillator pseudocumene + PPO (1.5 g/l)

Mass 278 t (71.3 t fiducial)

Number of PMTs nominally 2212

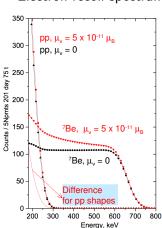

Abundance of 238 U and 232 Th $< 10^{-19}$ g/g (the most radiopure experiment ever!)

Energy resolution @ 1 MeV $\,\sim 5\%$

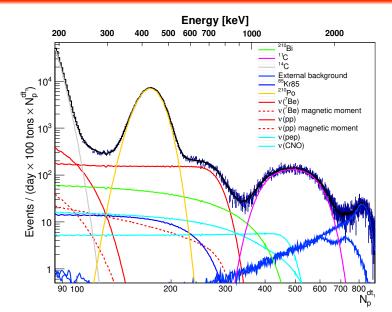

Spatial resolution @ 1 MeV $\,\sim$ 10 cm

Borexino scheme

Borexino Detector



Magnetic moment of solar neutrinos



only pp and ⁷Be neutrinos are considered due to the largest fluxes at low energies

Electron recoil spectrum

Electron recoil spectrum (1291.5 days of Phase-II data set)

Independent constraint on the solar neutrino fluxes

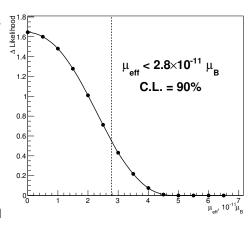
Neutrinos are captured in gallium experiments via charged current:

71
 Ga $+$ ν_e $ightarrow^{71}$ Ge $+$ e^-

Thus, they are not sensitive to neutrino electromagnetic properties and their data can be used in order to constrain the rate of $\nu-e$ weak interaction:

$$\sum_{\textit{solar } \nu} R_{\textit{Ga}} \frac{R_{\textit{BX}}^{\textit{weak}}}{R_{\textit{exp}}} \frac{P_{\textit{ee}}^{\textit{new}}}{P_{\textit{ee}}^{\textit{old}}} = 66.1 \pm 3.1 \pm \delta_{\textit{R}} \pm \delta_{\textit{FV}},$$

 δ_R is the uncertainty of single rates estimation δ_{FV} is the fiducial mass uncertainty


added as a pull-term in the likelihood function

Result for the effective solar neutrino magnetic moment (including systematic uncertainties)

Varying fit conditions:

- choice of energy estimator (number of triggered PMTs within 230 or 400 ns)
- two approaches of pile-up description
- high/low metallicity of the Sun

Likelihood profile for each fit configuration is obtained by fitting the spectrum with μ_{ν} fixed at a certain value. The total profile is a weighted sum of the individual ones.

Results for mass and flavor eigenstates

For initially electron neutrino:

Dirac:

$$\mu_{\text{eff}}^2 = P_{e1}\mu_{11}^2 + P_{e2}\mu_{22}^2 + P_{e3}\mu_{33}^2$$

Majorana:

$$\mu_{\text{eff}}^2 = P_{e1}(\mu_{12}^2 + \mu_{13}^2) + P_{e2}(\mu_{21}^2 + \mu_{23}^2) + P_{e3}(\mu_{31}^2 + \mu_{32}^2)$$

Flavors:

$$\mu_{\rm eff}^2 = P_{\rm ee}^{3\nu} \mu_{\rm e}^2 + \left(1 - P_{\rm ee}^{3\nu}\right) \left(\cos^2\theta_{23} \mu_{\mu}^2 + \sin^2\theta_{23} \mu_{\tau}^2\right)$$

$$\begin{split} \left| \mu_{11}^{\rm D} \right| &< 3.4; \quad \left| \mu_{22}^{\rm D} \right| < 5.1; \quad \left| \mu_{33}^{\rm D} \right| < 18.7; \\ \left| \mu_{12}^{\rm M} \right| &< 2.8; \quad \left| \mu_{13}^{\rm M} \right| < 3.4; \quad \left| \mu_{23}^{\rm M} \right| < 5.0; \\ \left| \mu_{e} \right| &< 3.9; \quad \left| \mu_{\mu} \right| < 5.8; \quad \left| \mu_{\tau} \right| < 5.8. \\ & \text{in } 10^{-11} \mu_{\rm B} \ (90\% \ {\rm C.L.}) \end{split}$$

Comparison with other experiments

μ_{ν_e}

GEMMA:

$$\mu_{\nu} < 2.9 \times 10^{-11} \mu_{\rm B} \ (90\% \ {\rm C.L.})$$

A. G. Beda et al., Phys. Part.

Nucl. Lett. **10**, 139 (2013).

This analysis:

$$\mu_{
u} < 3.9 imes 10^{-11} \mu_{
m B} \ (90\% \ {
m C.L.})$$

$\mu_{\nu_{\tau}}$

DONUT:

$$\mu_{\nu} < 3.9 \times 10^{-7} \mu_{\rm B} \ (90\% \ {\rm C.L.})$$

R. Schwienhorst et al. Phys.

Lett. B **513**, 23 (2001).

This analysis:

$$\mu_{
u} < 5.8 imes 10^{-11} \mu_{
m B} \ (90\% \ {
m C.L.})$$

$\mu_{\nu_{\mu}}$

LSND:

$$\mu_{\nu} < 6.8 \times 10^{-10} \mu_{\rm B} \ (90\% \ {\rm C.L.})$$

L. B. Auerbach et al. Phys.

Rev. D **63**, 112001 (2001).

This analysis:

$$\mu_{
u} < 5.8 \times 10^{-11} \mu_{
m B} \ (90\% \ {
m C.L.})$$

$\mu_{\nu}^{\it eff}$ (solar)

Super-Kamiokande:

$$\mu_{
u} < 1.1 imes 10^{-10} \mu_{
m B} \ (90\% \ {
m C.L.})$$

D. W. Liu et al. Phys. Rev.

Lett. **93**, 021802 (2004).

This analysis:

$$\mu_{
u} < 2.8 imes 10^{-11} \mu_{
m B} \ (90\% \ {
m C.L.})$$

Conclusions

• Using the Phase-II data of Borexino experiment the effective magnetic moment of solar neutrinos has been limited

Effective magnetic moment of solar neutrinos

$$\mu_{\nu}^{\rm eff} < 2.8 \times 10^{-11} \mu_{\rm B} \ (90\% \ {\rm C.L.})$$

 Limits on neutrino magnetic moments of mass and flavor eigenstates are also calculated

See for more details:

M. Agostini et al. Phys. Rev. D 96, no. 9, 091103 (2017)