Phase-I Trigger Readout Electronics Upgrade of the ATLAS Liquid-Argon Calorimeters

Tatsuya Mori (Univ. of Tokyo, JP), on behalf of the ATLAS Liquid Argon Calorimeter Group

Table of Contents

- Overview : Phase-I upgrade of the ATLAS LAr Calorimeter readout
- Overview : The role of custom developed hardware for readout
- Performance results of prototype boards in the Demonstrator System

ATLAS LAr Calorimeter

7000 tons
88 Million channels
3000 km of cables
2T solenoid
Toroid (B ~ 0.5T in barrel;~1T end-cap)

Semiconductor tracker

Phase I Upgrade of LAr Calorimeter Readout

Purpose:

providing higher-granularity, higher-resolution, and longitudinal shower information from the calorimeter to the Level-1 trigger processors

Strategy:

increasing granularity 10 times by changing from **Trigger Tower** to **Super Cell** readout (will be done during 2018)

Trigger Tower:

sums the energy deposition across the longitudinal layers of the calorimeters in an area of $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$

Super Cell:

provides information for each calorimeter layer for the full η range of the calorimeter, and finer segmentation $(\Delta\eta\times\Delta\phi=0.025\times0.1)$ in the front and middle layers

The Architecture of Upgraded Trigger Electronics

LAr Trigger Digitizer Board (LTDB)

To Tower Builder Board

- receive analog signal and digitize Super Cell signals
 - Digitization is based on custom developed
 12-bit SAR ADCs in 130 nm CMOS technology
 - 40 MHz sampling
 - radiation tolerance
- transmit the digitized signal to the back end
 - using the serializer (LOCx2) and optical driver (LOCld)
 - 5.44 Gb/s optical links per fiber (40 fibers in total)
- each of the 124 LTDBs handles up to 320 Super Cell channels

LAr Digital Processing System (LDPS)

The Role:

- receive the digitized data at a total rate of 25 Tb/s
- perform digital signal processing in real-time
- transmit the processed data to L1Calo at a total rate of 41 TB/s

Design of LDPS:

consist from 32 ATCA carrier blades

- which carry 4 mezzanine cards (AMC) each
- precise energy reconstruction, pile-up suppression and ID of the correct BC time are performed all on AMC
- real time processing done by ALTERA Arria-10
- each of which handles ~1100 Super-Cells on average

Carrier Board

LTDB Demonstrator

For testing the performance of the Super Cell, **LTDB Demonstrator** has been installed on the ATLAS detector (2014 Summer)

- installed in the barrel part $(1.767 < \phi < 2.160, 0 < \eta < 1.4)$
- operated in parallel to the regular ATLAS data taking during the LHC Run-2
- equipped with 2 prototype LTDBs (BNL, LAL/Saclay)
 - BNL : analog mezzanine, digital main board
 - LAL/Saclay: digital mezzanine, analog main board
 - ADC: TI ADS5272 for both cases
 - implement Stratix IV FPGAs
 - operated in a commercial Advanced Telecommunications
 Computing Architecture (ATCA) system

Where Demonstrator is Installed

Where Demonstrator is Installed

Where Demonstrator is Installed

Front View of Demonstrator Crate

The Prototype LDPB on Demonstrator

- developed at LAPP
- The core components : ALTERA ® Stratix IV FPGAs
 - two Front FPGAs
 - receive digitized data
 - format them in ATLAS RAW Event Format
 - one Back FPGA
 - readout through ATCA fabric interface with IPbus
 - handle ICMP
 (Internet Control Message Protocol)
 - interconnected via XAUI

from the LTDB

The optical transceivers

The connectors to a 10 GbE switch through ATCA backplane. The switch connected to PC with 2 optical fibers (TX/RX) at 10 GbE

Performance Results of Prototype Boards in the Demonstrator System

Measurements on Demonstrator System

On the legacy readout

- in order to verify no effect due to new electronics
 - Total Noise & Coherent Noise Fraction on Front End Boards
 - Total Noise on the Trigger Readout for Run2

On the demonstrator readout

- Noise on LTDB Demonstrator
- Pulses from LTDB Demonstrator
- Linearity of LTDB Demonstrator

Total Noise on Front End Boards

$$(\text{TotalNoise})^2 \equiv \frac{\sum_{k}^{N_{evt}} (\sum_{i}^{N_{ch}} x_i^{(k)} - \sum_{i}^{N_{ch}} \mu_i)^2}{N_{evt}}$$

• The total noise of the 128 channels of the Front End Boards (FEBs)

→ The noise level of the demonstrator crate is consistent with that of neighboring crates

Coherent Noise Fraction on Front End Boards

- Coherent Noise Fraction (CNF : ρ_{COH}) indicates how much noise of a channel originates from coherent noise in average
- The CNF for feedthroughs (FT) 7-12 on the detector has been computed
 - FT9, $10 \rightarrow$ demonstrator crate
 - FT7, 8, 11, $12 \rightarrow$ neighbor crates

slot numbering					
Layer	Pre-sampler	Front	Back	Middle	All
slot	1-2	3-8	9-10	11-14	15

→ The noise level of the demonstrator crate is consistent with that of neighboring crates

coherent noise fraction [%]

Total Noise on the Trigger Readout for Run2

• Total Noise on the Trigger Tower readout has been measured for confirming the demonstrator crate doesn't affect the trigger path used for physics @ Run2

$$(\text{TotalNoise})^2 \equiv \frac{\sum_{k}^{N_{evt}} (\sum_{i}^{N_{ch}} x_i^{(k)} - \sum_{i}^{N_{ch}} \mu_i)^2}{N_{evt}}$$

→Observed noise level is consistent with current system

On The Demonstrator Readout

Noise on LTDB Demonstrator

RMS of pedestal ADC of LTDB Demonstrator has been measured

→ The jump seen at eta=0.8 reflects the change of absorber thickness, electrodes and calibration resistors

Pulse from LTDB Demonstrator

- Pulses have been seen from LTDB Demonstrator
- $\Delta ADC \equiv ADC_{max} ADC_{pedestal}$
 - ADC_{pedestal} is defined by the average of pedestal values from 0 to 50 ns

Linearity of LTDB Demonstrator

Pulses have been checked with several DAC values

- Linearity has been checked as function of DAC
 - Red down-triangle corresponds to the upper plot
- ADC is saturated a DAC = 10000, but ADC count is not saturated →already saturated at analog readout →expected & designed behavior

Linearity of LTDB Demonstrator

 Pulses have been checked with several DAC values

- Linearity has been checked as function of DAC
 - Red down-triangle corresponds to the upper plot
- ADC is saturated @ DAC = 10000, but ADC count is not saturated →already saturated at analog readout
 - → expected & designed behavior
 - \rightarrow Linearity is kept up to high E_T enough

Summary

- The performance of the prototype LTDB & the prototype LDPB on the demonstrator system has been measured;
 - On the legacy readout
 - confirmed to have no significant noise
 - confirmed not to affect FEBs readout & trigger path for Run2 significantly
 - On the demonstrator readout
 - pulse and noise have been observed
 - linearity has been checked

Plan

- Take the following data with pp collision for filtering algorithm for energy reconstruction
 - Response of real EM object
 - Noise data
 - → These are data for filtering algorithm development which we can not get without the demonstrator

Thank you very much!

Backup

The Upgraded Trigger Electronics

