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Nutlear Capture of Mesons and the
Meson Decay

B, PONTECORVO
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HE experiment of Conversi, Pancini, and Piccioni?
indicates that the probability of capture of a meson
by nuclei is much smaller than would be expected on the
basis of the Yukawa theorv.®? Gamow* has suggested that
the nuclear forces are due exclusively to the exchange of
neutral mesons, the processes involving charged mesons
and the g-processes having probabilities which are smaller
by a factor of about 1002,

We notice that the probability (~10% sec.”™) of capture
of a bound negative meson is of the order of the probability
of ordinary K-capture processes, when allowance is made
for the difference in the disintegration energy and the differ-
ence in the volumes of the K-shell and of the meson orbit.
We assume that this is significant and wish to discuss the
possibility of a fundamental analogy between g-processes
and processes of emission or absorption of charged mesons.

An immediate consequence of the experiments of the
Romegroup!is that the usual interpretation of the g-process
as a “‘two-step’” process (probable” production of wvirtual
mezon and subsequent @-decay of the meson) completely
loses its validity, since it would predict too long g-lifetimes :
the meson is no longer the particle responsible for nuclear
F-processes, which are to be described according to the
original Fermi picture (without mesons). Consequently
there is no need to assume that charged mesons hawve
integral spin, as the Yukawa explanation of @-processes
required. Once we believe that the ordinary g-process is not
connected in any way with the meson, it is difficult to see
strong reasons for the usual assumption that the meson
decavs with emission of a g-particle and a neutrino. We
shall conzider then the hypothesis that the meson has spin
i# and that its instability is not a §-process, in the sense
that it does not involve the emission of one neutring. The
meson decay must then be described in a different way: it
might consist of the emission of an electron and a photon or
of an electron and 2 neutrinos® or some other process.

In the hyvpothesis that the meson decay is not a F-process
{(meson of spin %) &#he process of nuclear absorpdion or pro-
dicctiorn of a simgle sneson wowuld be accompanded by the
emission of a nexfrine. This analogyv between F-particles and
mesons suggests, in addition, that just as the production of
zingle @-particles is extremely unlikely, while the prodoac-
tion of electron pairs 1= a very likely phenomenon, so the
production of a single charged meson would be wvery
unlikely, while the production of pairs of mesons would be
quite probable. The experimental evidence is, in fact,® that
mast, i not all, of the meson showers are created in con-
nection with large Auger showers.

The assumption that the emission or absorprion of one
meson is accompanied by the emission of a neutring would
explain in a natuaral way a somewhat puzzling experimental
result. Amongz the few pictures of a meson stopping in the
gas of a cloud chamber, no **star’ has been cobserved at the
end of the meson track.” The absence of a star must be due
to a process leaving the capturing nucleus in a mot too
excited state: the mechanism proposed here would explain
that the capture of a negative meson from a nucleus 2
results in a nucleus 2 — 1 close to its ground lewvel, since the
excess energy could be carried away by the neutrino,
Actually, in such a process we should expect that the
emission of a neutrino of high energy with consequent
production of the nucleus Z —1 in a state of low excitation
would be more likely than the emission of a neutring of low
energy with the production of the nucleus & — 1 in a state of
high excitation (cf. K-capture processh.

The hyvpothesis that the meson decay is not a J-process,
while the meson absorption is a G-process, does not reguire
that hwpothetical particles such as neutral mesons are
involked to account for nuclear forces. In fact, a heawvyw
electron gair theory of nuclear forces was successfully de-
wveloped by Marshak.® Moreowver, a pair theory is capable of
accounting, at least in principle, for the existence of
processes in which several pairs of mesons are produced in a
single act, as suggested by Heizenberg in connection with a
different problem.®

Returning to the actual decay of the meson, an expoeri-
ment supgests itself which micht answer the following
question : Is the electron emitted by the meson with a mean
life of about 2.2 microseconds accompanied by a photon of
about 30 Mewv? This experiment is being attempted at the
present time, since it is felt that the available analysis!™ of
the soflt component in eqguilibrium with its primary meson
component is probably insufficient to decide definitely
whether the meson decavs into either an electron plus
neutral particle{s) or electron plus phaton.
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Physics Motivation / Theory
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Modern SM calculations:
1.2352(5) X 10™* Marciano and Sirlin, Phys.Rev.Lett. 71 (1993)3629
1.2354(2) X 10™* Decker and Finkemeier, Nucl.Phys. B438 (1995)17
Chiral PerturbationTheory:

1.2356(1) x 10 cirigliano and Rosell, Phys.Rev.Lett. 99 (2007) 231801



Experiment
(1.2344+0.0023(stat)+0.0019(syst))x 104
TRIUMF, Phys.Rev.Lett. 115 (2015) 071601
(1.2265+0.0034(stat)+0.0044(syst))x 104
TRIUMEF, Phys.Rev D49 (1994) 28
(1.2346%0.0035(stat)+0.0036(syst))x 104
PSI, Phys.Rev.Lett. 70 (1993) 17
New average:

(l.23271“0.0023)X10‘4
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PEN apparatus (2009)

Main components:

BC — Beam Counter

AD - Active Degrader

MmTPC — mini
Time-Projection Chamber

|
BC

AT — Active Target

MWPC1, MWPC2 — Multi-
Wire Proportional Chambers

PH - Plastic Hodoscope E

10 cm

pure Csl - calorimeter
and PMTs



The PEN calorimeter consists of CSI Calorl meter

240 pure Csl crystals.
The inner radius of the calorimeter
IS 26 cm, and the module axial
length is 22 cm; correspondingto
12 Csl radiation lengths
(X,=1.85cm)

Weightis 1.6 t.

Slow component decay
time 35 ns

Fast/Total >0.76

total solid angle ~0.77-4x
Angle resolution ~2°
AE/E ~ 4-5%

Time resolution ~ 0.68 ns






The PEN Apparatus 2009




PEN Event Trigger

Process to Observe

75 MeV/c pion beam

Active target with stopped pions,
E =11 MeV

T—ev (1T2e),
E.~0.5m_=69.79MeV, 1,~26 ns

T—v (norm), E =4.12 MeV

u—evv, Eqn,=0.9m =52.83 MeV,

Tu~2197 ns

30 40 50 50 70
Calorimeter Energy (MeV)



Acqiris High Speed 10-bit PXI Compact
Digitizer, Model DC282,running at 2GS/s

i
Ctrl 'O

Signals from beam detectors
BC — Beam Counter

AD — Active Degrader

AT — Active Target

are sent to digitizers for
waveform analysis for
n—->u—>e and m—>e decay
chains.
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Target waveform analysis for m—>u—>e decay chains in
which the three signals are well separated. Removal of
the predicted pion and positron signals leaves a clean
4MeV muon signal.



Beam detector mTPC

—To monitor the distribution of * and pu* stops
in the target, which is necessary for calculating
the detector acceptance.

—To reconstruct the vertices of the pion decay
in the active target and correct the ¥, u*, and e*
energy loss with allowance for inhomogeneity of
light collection in the active target.

—To reconstruct the length of e* tracks in the
target for finding e* energy loss for each
individual event.

—To reject events with t* and p* that decayed in
flight.



MTPC Technical Specifications

* Proportional Region:

40x6x40 mm?3
e Drift Region: 40x40x50 mm?3
Cathode * Drift Gas: 90% Ar and 10% CH,
AL A2 A3 A4 e 4000 V across drift region
N ;1 ...... oid ; e Grid: 50 pm wires with 1 mm

€2 ‘ fc7 spacing
a z c8 . ]
c ., ° Nichrome Anode Wires

cs c10 O 40 mm length

O 20 um diameter
O 10 mm spacing
0 235 Q resistance
e CAEN VME digitizer V170



mTPC 2009




WaveForm Digitization

O Red: Left
O Blue: Right
Pion Tracking:

e X: charge division

Relative amp. left : right

0, <0.97 mm

e y:drift time

Time of rising edge

o, < 0.35 mm

e 7:wire location

Physical mounting

Nydegger R. Bechelor Thesis (2012)
Sokolov A. et al., NIM A574 (2007) 50.
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PH — PEN Plastic Hodoscope

(i)

ﬁ —_— 6538mm f
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The hodoscope array consists of 20
iIndependent BC-408 plastic scintillator
staves arranged to form a complete
cylinder 653.8 mm long with a 129 mm
radius and 4.0 mm thickness.

The light attenuation length is 210 mm.

The scintillator light is viewed at both
detector ends by two Burle Industries
S83062E photomultiplier tubes. The
energy resolution measured for
minimum ionizing particles is o/E=26%.



PH — measurement and simulation

Energy Hodoscope Energy Hodoscope
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Left: Intrinsic response of simulation compared to
measurement.

Right: Full detector response on measurement



The constraints on MWPC design
for the tracking detector:

(1) low mass, in order to minimize the y’s
converting into e* e pairs;
(2) high efficiency—better than 99.9%;

(3) high rate capability—up to 107 minimum
ionizing particles (MIP) per second,;

(4) stable operation and good radiation
hardness;

(5) cylindrical geometry.



MWPC specification

MWPC, MWPC,

Active length (mm) 350 540
Diameter anode (mm) 120.3 240.2
Number of anode wires 192 384
Number of inner cathode strips 2x64 192
Number of outer cathode strips 2x64 192
Total chamber thickness (mg/cm? 53.9 74.8
Total chamber thickness 1.4:'103 2.0°10°3

(rad. length)
Detection efficiency >0.96 >0.97
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Cathode Charge Distributions in MWPCs

Old MWPC 1 MWPC 2
o 1 nolf 0.0082 7 144 . : : 1" f nf 0.00378 / 144
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Experimental and E. Mathieson (NIM A270 (1988) 602 )
single parameter formula.



MWPC induced cathode charge
Measurement and Simulation

induced charge fraction vs strip distance induced charge fraction vs strip distance simulation

08 - 0.8k




Cathode Charge Distributions

Comparison of inner and outer
cathode charges for
measurement and simulation.

1 III

Cathode charge of MWPC
(arbitrary units) vs energy
deposited in plastic hodoscope
PH.
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Observed energies are
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waveform and predicted
energies are obtained from
mTPC, MWPC, and beam
counters for the pion and
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Conclusion

Particle tracking plays an integral part in the analysis of the
PEN experiment for the precision measurement of the pion
electronic decay ratio.

In the 2009-2010 runs the mTPC and MWPC chambers
successfully operated for more then eight months.

The aforementioned detectors are utilized in the
calculation of vital observables that are used to
discriminate between background and signhal events.
Proper Monte Carlo simulation, necessary for determining
the acceptances, has been successfully developed, thus
clearing the way for the evaluation of a precise branching
ratio.



Thank you!



Pion decay, lepton universality
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Simulation and measurements:
Energy and timing
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. — ev Simulation
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PIENU (TRIUMF)

Beam

Target assembly

Silicon strip
B3

B4 {target)
Veto
Silicon strip
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