

E\/aluating object drives an
non-volatile pemory

Andreas-Joachim Peters
for the VS project and IT-DSS

IT Data’& Storage Service Group X ?OOtD
NEC’2015 1.10.2015 S

Disk Storage @ CERN

Andreas.Joachim.Peters@cern.ch

mailto:Andreas.Joachim.Peters@cern.ch

OVERVIEW

e|ntroduction to EOS
*Open Kinetic
NVRAM R&D

rrrrrrrrr

APP
CLIENT

PI——

MD
SERVER

P————

DATA
SERVER

P——

DDDDDDD

CER/‘W
ARCHITECTURE \

project since 2010

hroduction since 2011
simple - GPL - JBOD
hardware

INn-memory namespace

strong security

[server side security]

many protocols
quota, tunable QoS
Dev&Ops @ CERN/IT

EOS DEPLOYMENT C\/

\
\ \~—/

" Largest Instance ATLAS | EOS Sum

140.0 PB

120.0 PB

100.0 PB

80.0 PB

60.0 PB

>ede) mey

— 38 @'used
40.0 PB

20.0 PB

2010 2011 2012 2013 2014 2015

EOS STORAGE
IN NUMBERS

April 2015
Capacity 140 PB
Server 1.400
Hard Disks 44Kk :
_ single thread namespace stat rate

Files 271 M 160 kHz
Directories 26 M _

_ multi threaded namespace stat rate
Replicas 0.5B 1 MHz
Connectivity 13 Thit memory footprint 0.5-1 kb/file
random IOPS 22 M —
Disk BW 3.3 TB/s
Internal Messaging 150 kHz . .
State Machine 3M kv pairs FIatVIeW .|S a.
Users storing data ~3k scalablllty limitation!
Quota rules 9.600
CJNOf9 LN|e2 3°000

KINETIC DRIVE TECHNOLOGY

SEAGATE
OPEN KINETIC

ethernet drives

N\ OPEN KINETIC C\ERN
CERNop(;nla FOR SOFTWARE DEFINED STORAGE N2~

P—————— Pp—p——

conventional storage system Kinetic open storage platform

Server Application
Kinetic Library i]

Application
File System DB

POSIX
File System
Volume Manager

Driver

, FC

g

Storage Server
RAID
Battery Backed RAM

Cache

L SAS
Devices -
SAS Intertace Devices
SMR, Mapping Ethemet Interface

Cyiinder. Mead Sector Key Value Store

K | (@) |[0oD) |y

Drive HDA Cylinder, Head, Sector

Drive HDA

» POSIX » Kinetic AP

Storage controllers, SANs and even file systems are all under threat from Kinetic, an extraordinarily disruptive

Kinetic more interesting than ever ... = (oage architecture,

SEATTLE, LinuxCon/CloudOpen/ContainerCon— August 17, 2015 — The Linux Foundation, the nonprofit organization dedicated to accelerating the growth of
Linux and collaborative development, today announced a new effort to define and promote open source software and standards for cloud object storage technologies.

The new Collaborative Project is the Kinetic Open Storage Project and includes founding members Cisco, Cleversafe, Dell, Digital Sense, Huawei, NetApp, Open vStorage,
Red Hat, Scality, Seagate, SwiftStack, Toshiba and Western Digital.

OPEN KINETIC API
a1]

»Kinetic API SEAGATE KINETIC
Access Control l\ |
« READ - canread
WRITE - can write
DELETE - can delete
RANGE - can do range
SETUP - can setup device
P2POP - can do p2p copy
GETLOG - can get log
« SECURITY - can set security
NOOP - like ping
PUT - store object max. value size 1 MB
DELETE - delete object

FLUSH - flush outstanding PUT/DELETE to » API less feature rich than rados API - low-level
device (=sync) : - - i

ST et Yo e £ e i » NnoO pabr.tt|a| value get/u|08latets/§|0|toendt onlly f;/ll objlect GET/PUT
GETVERSION - retrieve version tag for object g > no arbl rar.y map per object, bu Ve_C or clockjversion

GETNEXT - return next sorted key . » noclustering support between devices, but P2P push
GETPREVIOUS - return previous sorted key : ' '

AN e 1 protocol implemented with google protocol
SETCLUSTERVERSION - set cluetser version . buffers

SETPIN - instant secure erase § : :

SECURITY - set ACL . » disk uses sorted string tables and log

GETLOG - retrieve log §

PEERTOPEERPUSH - copy KV between . structured merge tree technology ,

»need to implement high-level API & clustering software : libkineticio

* P

.\".

-+ SEAGATE KINETIC

CERNopenlab

»why kinetic technology?

»fits technology of shingled disks
» better random write

»less meta-data overhead

»lower TCO

» performance expectation
»random/sequential write, sequential read:
50 MB/s for 1M objects
»random read -15% to traditional drives
»~ 1000 random write OOPS

operations . *’4"3

A
\/ : 92% of the operations

7 N\

2 —

/ 0.5% of the data

»integrated by
» swift

P access via gateways

»ceph not provided

example of traditional 10 inefficiency

* >
iy OrPEN KINETIC

CERNopenlab . ,
Why and how to integrate them in EOS!?

® Kinetic concept has potentially simple(r) deployment
concept

® install - register MAC - remote config - operation

® required top of the rack switches and ports identical
to conventional disk server

® no disk-server association anymore

® no visible Linux OS

® exploit Kinetic technology in a way that EOS does not
need to manage individual drives anymore

® HA clusters of Kinetic drives
® downscale storage leaf nodes by e.g. 256
® today we manage |4k in largest instance
® tomorrow we would manage only 55 Kinetic Cluster

V. SEAGATE KINETIC

) '.
CERNopenlab

Installed Kinetic Cluster in CERN CC

| PB usable capacity

- each server provides internal switch with
2x 1 GBit Unit Uplink

- 40 GBit Rack Uplink

* P
.\'-.

) "
CERN openlab

SAS Model

Single Server provides access to
attached disks

Q connected via SAS cable
+ K
;A-‘ ———
_3 v,
g‘ \——;

OPEN KINETIC

EOS Software Architecture

by

Proxy Server(s) provide access to disks
Client may have direct access to

Kinetic disks
? Cllont J
et}

network access to
any disk

/
I
A

* P

OPEN KINETIC E\

.~‘ a B
. -y
CERNopenlab o o 7 _A\
| libkineticio - 1O for clustered kinetic drives \
® development of libkineticio in C++| | Developer: Paul Lensing

® provides parallel IO for chunking files over a drive cluster
® provides file meta data KV interface
® provides HA via Intel’s ISA Erasure Encoding libarry

reconstrucion, hinted handoff ...

® development of EOS console tools for kinetic administration

® ¢
® ¢
® ¢

DRAFT

uster configuration (k,m)
uster consistency scrubbing
uster repair

eos fs kinetic-status <id>

eos fs kinetic-repair <id>

eos fs kinetic-list

eos fs kinetic-config <id> timeout / reconnect

eos fs kinetic-setup <id> nData / nParity / subchunk-size

rn OPEN KINETIC cérn

>
CERNopenlab NS
Pen libkineticio - IO for clustered kinetic drives

Reads in JSON files at initialization for
- drive location {wwn,ipl,ip2,port}

- drive security {wwn,id key} Open(path, ...)
- cluster definition {clusteriD, nData, 1. Extract Cluster ID from Path All data read / write through Kinetic Chunks.
nParity, timeout, ratelimit, drive-wwns } 2. Obtain Cluster Instance from ClusterMap - concurrency resolution on write
- 'freshness’ guarantee on read
ClusterMap KineticFilelO
getCluster(ID) [~ 77° open(path, flags, mode) KineticChunk
read(off“sseet. buf:?r. length) -
write(offset, buffer, length) . | read(buffer, offset, length) Chunk maximum size equals
objects on request. remc:\)fe) truncate(offset) exposed in cluster.limits()
sync flush()
: stat()
Single instance per close()
cluster. Q
¢ :
|
I |
| |
I I
b
1|
Cluster RatelLimitConnection
nData : size_t reconnect_ratelimit: seconds AsyncKineticConnection
nParity : size_t 1. | connection_status: KineticStatus 1 i
timeout : seconds PN *
1.* get()
size() setError(KineticStatus)
g:;:e based on get(key, version, value)
: . key, version, value
nData+nParity l?:rtrfov&key version)) ErasureEncoding
drives round-robin range(start,'end) 1
from there. <----- | nData: size_t
nParity: size_t
1.*

compute(vector<values> stripe)

* P

i SEAGATE KINETIC <\®/
CE RN;pe’nlab N7~

First Performance Evaluations - Writing

® Test with I0OGE FST gateway/server comparing

® conventional disk server 35 disks
® Kinetic Cluster 42 disks & (10,2) EC configuration
® Kinetic Cluster 42 disks & (32,4) EC configuration

* P
N m Tests performed by: Ivana Petya Write pe rfO rmance

o '.
CERNopenlab

Write performance for 1GE client

Write performance benchmark for 10GE client
120
400

100 350

300

250
.. == DEV -

80

., == DEV

Q
o g
- 0 —4— Kinetic-10:2 200 et EOS-Kingtic-10:2
§ Kinetic-32:4 o EOS-Kinetic-32:4
o 150
40
100
20 50
/ 0 L=
(¥ 4 1M 4 16M 64M 128M 256M 512M 1G 2G 4G

4 1M 4M 16M 64M 128M 256M 512M 1G 2G 4G

* P

.\".

[S 4

@
CERNopenIab

62

57

52

47

42

37

32

"EOS-DEV™

ROOT TTree Analaysis

Tests performed by: Ivana Petya

Read performance with 1 client - 5 runs

100 percentage of entries

"EOS-KINETIC-10:2"

W Real time 52
® CPU Time

32

"EOS-KINETIC-32:4"

0.961

0.941

0.921

0.901

0.881

0.861

0.841

ik bk

"EOS-DEV”

~

Read performance with 1 client - 5 runs

SEAGATE KINETIC

N

CERN

\

Read performance with 1 client - 5 runs

. L. B

"EOS-DEV”

CPU Ratio - comparison

“EOS-KINETIC-10:2"

a

"EOS-KINETIC-32:4"

50 percentage of entries

Read Amplification
due to Chunking

"EOS-KINETIC-10:2

8 CPU Ratio — 1009
® CPU Ratio - 50%

"EOS-KINETIC-32:47

® Real time
B CPU Time

e SEAGATE KINETIC (¢
CERNo'pe’nIab Blocksize Impact 7

each Chunk is split over m disks blocksize=chunksize/m

Kinetic Cluster Benchmark varying the block size

O write seq O read seq
write seq read seq 898.6
21-32-16 218.24 72.32 900
21-64-16 368.96 126.08
21-128-16 557.12 234.88 675
21-256-16 751.68 381.44
21-512-16 898.56 465.28 %’
21-1024-16 843.52 637.76 = 450
5
Q
n
RS: m=16 k=4
218.
225

NV NV N NV AV N
@ 6, 7 2 By 7
S 4 < % ’ 2
& X < %
s
Cluster Configuration i - bs - k

with i=total disks bs=blocksize k=data disks - 4
parity disks

) 3
v S9EAGATE KINETIC ciERN
® O’
CERNopenlab NS
P Data Drive Number Impact
Kinetic Cluster Benchmark varying the number of data disks
| — ~ | O write seq O read seq
write seq read seq
42-256-8 973.248 749.216 1100
42-256-16 881.28 676.8
42-256-32 1044.8 734.72
825
RS: e k=4 % v
=
3 550
o
Q.
%)
275
0
. - b4
e_.,% e_,@o ee%
@ e @

Cluster Configuration i - bs - k
with i=total disks bs=blocksize
=data disks - 4 parity disks

* P

w.» S EAGATE KINETIC CERN
CERN openiab 7

Client Scaling

® Kinetic Cluster 45 disks & (16,2) EC configuration

Kinetic Cluster Benchmark varying the number of clients

, , O write seq O read seq
21-1024-16 write seq read seq
1 418 272 900
2 730 558
675
4 800 604 *
2
8 864 640 5 450
Q
16 752 624 (%
64 768 522.88 225
128 830.72 512
0
1 2 4 8 16 64 128
RS: m=16 k=4 Number of Clients

hs=1MB #disks=21

N

.» NVRAM FOR EOS ()

*
CERNOopenlab <
P Client Scaling —

CERN targets openlab partnership with Data Storage Institute in Singapore to evaluate NVRAM
technology as persistency model for an in-memory namespace used in EOS

.\‘-.

. &

o
CERNopenlab A+star

Data Storage
Institute

|dea: non-volative memory avoids boot time of the EOS

namespace because meta-data structures used by
the MGM application can be kept persistency in memory

“.. NVRAM FOR EOS

g

S
CERNopenlab _
| NVRAM Technology in use ...

Summer Student Project of Marti Bosch

¢ Simulated by DIMM RAM with a battery
® more sophisticated technologies incoming

® EOS used as a ‘testbed’ for further use
® Persistency is a ‘vertical’ property

® transactional updates for consistency

® persistent memory should not point to non-persistent memory

s NVRAM FOR EOS

ey

CERN o_pe’nlab

Mnemosyne

Mnemosynel exposes persistency to C/C++:

* pstatic variables are stored persistently
* pmalloc/pfree allocate persistent memory

* persistent annotations ensure correctness
* atomic blocks allow transaction control

1Volos, Tack and Swift (2011)

S NVRAM FOrR EOS

=g

L
CERN openlab

Mnemosyne - Programming Example

Sim pllfled example: (courtesy of Sergio Ruocco and Le Duy Khan, DSI)

pstatic int xp_ptr;

int main (int argc, char const argv []) {

atomic {
p_ptr = (intx)pmalloc(sizeof(int));
xp_ptr = 0;

}
} else {

atomic { *xp_ptr += 1; }
}

printf("xp_ptr = %d\n", *xp_ptr);
return 0;

‘ ' //T_\‘ :
.. NVRAM FOR EOS ‘Q’\W
CERNopgnlab , \ \v/\"\

| Mnemosyne - Programming Example \

Mnemosyne allows easily persistency of C structures

* as first test tried to replace C++ hash with performant C hash
* summer student project for native C hash

PersistentHash

Time (ms)

Hash Insertion Performance

500
450
400
350
300
250
200
150
100

50

() PP o »

google::dense_hash_map
google::sparse_hash_map
std::map
PersistentHashtable

ey

.......

‘..;.;"
....

.......
o
......

.-'...vf 111

o -
.'.

. C can beat C++

Number of entries

Memory used (MB)

. but slightly more memory usage

Benchmark

Implementation and Testing by Marti Bosch

PersistentHash

o o
M &
oS @o
160 - .
google dense hash map L
google::sparse_ “hash _map ,
140 std::map =
PersistentHashtable A
120 ot
100 e
80 - e
60
40
“0 Q Q) 8 o 8 Q 8 é
,\9@ ,‘QQQ ,,’Q& h@Q ,,)QQQ Q)QQQ ,\QQQ O,QQQ \9@0

Number of entries

* P / N \/
W em NVRAM FOR EDS '(["‘)‘\"'.\y'

® l‘ \\\\\) \I\. /
CERNopenlab VLA

Mnemosyne - Evalution / \

e Minemosyne needs upgrade to newer gcc/ICC to be able to
compile the full EOS code

e still using old patched gcc compiler

e we need transactional data structures, a hash is a starting point but
not sufficient, for e.g.:

e std::string

e std::vector

e persistent objects could change the way of thinking while
programming

® however the technology is not yet ready

e for the moment a pure R&D activity without production
applicability

* P

CERN openlab

Obiject Drives - Non-volative Memory

e Open Kinetic is a very promising platform to a new
way of cloud storage implementation

® Seagate Kinetic managed to evolve a single vendor solution into an OpenStandard
backed by major players on the storage market

e we did a first demonstration of good scalability and applicability in physics
production and analysis workflows

® Open Kinetic allows to easily scale-out the data volume related part of the EOS
storage system by two order of magnitudes

® the meta-data equivalent technology is currently in development to achieve a
similiar scale-out behaviour for meta-data

o NVRAM technology is still at the beginning for generic
applications and will be interesting once there is a
complete support by state-of-the art compilers

2y SUMMARY)

