

2

EOS
 Disk Storage @ CERN

Evaluating object drives and
non-volatile memory

Andreas-Joachim Peters

for the EOS project and IT-DSS  

IT Data & Storage Service Group

NEC’2015 1.10.2015

Andreas.Joachim.Peters@cern.ch

mailto:Andreas.Joachim.Peters@cern.ch

Contents

•Introduction to EOS
•Open Kinetic
•NVRAM R&D

ContentsOverview

Contents

Internet
Services

challengesArchitecture

‣ project since 2010

‣ production since 2011

‣ simple - GPL - JBOD

hardware

‣ in-memory namespace

‣ strong security  
[server side security]

‣ many protocols

‣ quota, tunable QoS

‣ Dev&Ops @ CERN/IT

EOS DEPLOYMENT

Largest Instance ATLAS EOS Sum

38 % used

Internet
Services

EOS STORAGE
IN NUMBERS

April 2015

Capacity
Server
Hard Disks
Files
Directories
Replicas
Connectivity [theor.]
random IOPS
Disk BW [theor.]
Internal Messaging
State Machine
Users storing data
Quota rules

140 PB
1.400
44k
271 M
26 M
0.5 B
13 Tbit
2.2 M
3.3 TB/s
150 kHz
3M kv pairs
~3k
9.600

single thread namespace stat rate
160 kHz 

multi threaded namespace stat rate
1 MHz 

memory footprint 0.5-1 kb/file

Flat View is a
scalability limitation!

Kinetic Drive Technology

Seagate  
Open Kinetic

ethernet drives

conventional storage system kinetic open storage platform

‣POSIX ‣Kinetic API

Open Kinetic
for software defined storage

Kinetic more interesting than ever …

Open Kinetic API

‣Kinetic API
• Access Control

• READ - can read
• WRITE - can write
• DELETE - can delete
• RANGE - can do range
• SETUP - can setup device
• P2POP - can do p2p copy
• GETLOG - can get log
• SECURITY - can set security

• NOOP - like ping
• PUT - store object max. value size 1 MB
• DELETE - delete object
• FLUSH - flush outstanding PUT/DELETE to

device (=sync)
• GET - retrieve value + meta data
• GETVERSION - retrieve version tag for object
• GETNEXT - return next sorted key
• GETPREVIOUS - return previous sorted key
• GETKEYRANGE - return keys in range
• SETCLUSTERVERSION - set cluetser version
• SETPIN - instant secure erase
• SECURITY - set ACL
• GETLOG - retrieve log
• PEERTOPEERPUSH - copy KV between

drives

‣ API less feature rich than rados API - low-level
‣ no partial value get/updates/append - only full object GET/PUT
‣ no arbitrary map per object, but vector clock/version
‣ no clustering support between devices, but P2P push

‣ protocol implemented with google protocol
buffers
‣ disk uses sorted string tables and log

structured merge tree technology

‣need to implement high-level API & clustering software : libkineticio

Seagate Kinetic

‣why kinetic technology?
‣fits technology of shingled disks
‣better random write
‣less meta-data overhead
‣lower TCO

example of traditional IO inefficiency
‣performance expectation

‣random/sequential write, sequential read:
50 MB/s for 1M objects
‣random read -15% to traditional drives
‣~ 1000 random write OOPS

‣integrated by
‣swift
‣access via gateways

‣ceph not provided

• Kinetic concept has potentially simple(r) deployment
concept
• install - register MAC - remote config - operation
• required top of the rack switches and ports identical  

to conventional disk server
• no disk-server association anymore
• no visible Linux OS  

• exploit Kinetic technology in a way that EOS does not
need to manage individual drives anymore
• HA clusters of Kinetic drives
• downscale storage leaf nodes by e.g. 256

• today we manage 14k in largest instance
• tomorrow we would manage only 55 Kinetic Cluster

Open Kinetic
Why and how to integrate them in EOS?

Installed Kinetic Cluster in CERN CC

Seagate Kinetic

21x12-Disk (4TB) SuperMicro Kinetic Server
1 PB usable capacity
- each server provides internal switch with  

2x 1GBit Unit Uplink
- 40 GBit Rack Uplink

EOS Software Architecture

Open Kinetic

SAS Model
Single Server provides access to  

attached disks

Kinetic Model
Proxy Server(s) provide access to disks

Client may have direct access to
Kinetic disks

connected via SAS cable
network access to

any disk

libkineticio - IO for clustered kinetic drives

Open Kinetic

• development of libkineticio in C++11
• provides parallel IO for chunking files over a drive cluster
• provides file meta data KV interface
• provides HA via Intel’s ISA Erasure Encoding libarry

• reconstrucion, hinted handoff …

• development of EOS console tools for kinetic administration
• cluster configuration (k,m)
• cluster consistency scrubbing
• cluster repair

eos fs kinetic-status <id>

eos fs kinetic-repair <id>

eos fs kinetic-list

eos fs kinetic-config <id> timeout / reconnect

eos fs kinetic-setup <id> nData / nParity / subchunk-size

DRAFT

Developer: Paul Lensing

libkineticio - IO for clustered kinetic drives

Open Kinetic

First Performance Evaluations - Writing

Seagate Kinetic

• Test with 10GE FST gateway/server comparing
• conventional disk server 35 disks
• Kinetic Cluster 42 disks & (10,2) EC configuration
• Kinetic Cluster 42 disks & (32,4) EC configuration

Write performance Tests performed by: Ivana Petya

ROOT TTree Analaysis

Seagate Kinetic

Read Amplification
due to Chunking

Tests performed by: Ivana Petya

Blocksize Impact
each Chunk is split over m disks blocksize=chunksize/m

Seagate Kinetic

Data Drive Number Impact

Seagate Kinetic

Client Scaling

Seagate Kinetic

• Kinetic Cluster 45 disks & (16,2) EC configuration

Client Scaling

NVRAM for EOS

CERN targets openlab partnership with Data Storage Institute in Singapore to evaluate NVRAM
technology as persistency model for an in-memory namespace used in EOS

Idea: non-volative memory avoids boot time of the EOS  
namespace because meta-data structures used by  

the MGM application can be kept persistency in memory

• Simulated by DIMM RAM with a battery

• more sophisticated technologies incoming

• EOS used as a ‘testbed’ for further use

• Persistency is a ‘vertical’ property
• transactional updates for consistency

• persistent memory should not point to non-persistent memory

NVRAM Technology in use …

NVRAM for EOS

Summer Student Project of Marti Bosch

Mnemosyne

NVRAM for EOS

Mnemosyne1 exposes persistency to C/C++: 
• pstatic variables are stored persistently 
• pmalloc/pfree allocate persistent memory
• persistent annotations ensure correctness
• atomic blocks allow transaction control

1Volos, Tack and Swift (2011)

Mnemosyne - Programming Example

NVRAM for EOS

Mnemosyne - Programming Example

NVRAM for EOS

Mnemosyne allows easily persistency of C structures 
• as first test tried to replace C++ hash with performant C hash 
• summer student project for native C hash  
PersistentHash

Hash Insertion Performance

Hash Memory Usage

PersistentHash
Benchmark

… C can beat C++

… but slightly more memory usage

Implementation and Testing by Marti Bosch

•Mnemosyne needs upgrade to newer gcc/ICC to be able to
compile the full EOS code

• still using old patched gcc compiler

•we need transactional data structures, a hash is a starting point but
not sufficient, for e.g.:

• std::string

• std::vector 

•persistent objects could change the way of thinking while
programming 

•however the technology is not yet ready

•for the moment a pure R&D activity without production
applicability

Mnemosyne - Evalution

NVRAM for EOS

Object Drives - Non-volative Memory

Summary

•Open Kinetic is a very promising platform to a new
way of cloud storage implementation
• Seagate Kinetic managed to evolve a single vendor solution into an OpenStandard

backed by major players on the storage market

• we did a first demonstration of good scalability and applicability in physics
production and analysis workflows

• Open Kinetic allows to easily scale-out the data volume related part of the EOS
storage system by two order of magnitudes

• the meta-data equivalent technology is currently in development to achieve a
similiar scale-out behaviour for meta-data

•NVRAM technology is still at the beginning for generic
applications and will be interesting once there is a
complete support by state-of-the art compilers

