Middleware for Big Data processing: Test results

I. Gankevich V. Gaiduchok Yu. Tipikin V. Korkhov A. Degtyarev A. Bogdanov

Theorising

Our approach

Test results

Theorising

Our approach

Test results

Definition

The data is considered *big*, if its pre- and post-processing¹ time is much larger than processing time.

Big data does not always mean big volume.

- ► Tightly-coupled data is big.
- ► High-volume data is big.
- ► Semi-structured data is big.

Edge cases.

▶ OpenFOAM: $t_{pre} + t_{post} \approx t_{proc}$ (not so big data)

¹general I/O, decompressing, decoding, filtering etc.

Data metrics

Approach: Try to be as close as possible to the edge case (i.e. decrease pre/post time).

$$t_{read} \xrightarrow{ ext{no. of replicas} o \infty} 0, \ t_{write} \xrightarrow{ ext{no. of chunks} o \infty} 0.$$

No. of replicas/chunks:

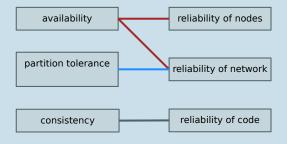
- Capped by physical constraints (total no. of nodes, max. no. of nodes per job etc.)
- Should be per-dataset configurable.
- Should be dynamic.

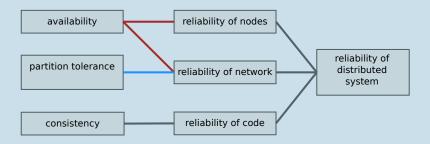
availability

partition tolerance

consistency

availability


reliability of nodes


partition tolerance

reliability of network

consistency

reliability of code

Reliability	How to improve	How to measure
of nodes of network of code	•	$ 1 - \alpha^{n} 1 - \beta^{m} 1 - \alpha n' - \beta^{m'} $

 α — probability of a node failure.

 β — probability of a network link failure.

n — amount of redundant nodes, $n \ge 1$.

m — amount of redundant network links, $m \ge 1$.

m', n' — no. of nodes and net. links participating in a distributed transaction.

Theorising

Our approach

Test results

The API

Everything is a micro-kernel — a unit of work which *always* binds to the compute node where the data is stored.

- ► Homogeneous API (no message objects).
- Micro-kernels can communicate locally when sent to the same compute node.
- When nodes with all replicas are full, new replicas may be created.
- Create subordinate kernels to parallelise the programme.
- Event-driven design: callbacks for data processing, collecting results from subordinates, reading/writing.

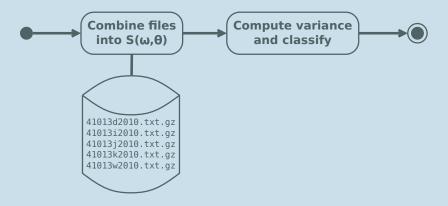
The implementation

A lightweight Linux service.

- ► Portable C++ programme (8130 SLOC).
- ► Basically a scheduler that allows applications to interact with a whole cluster via C++ API.
- ► An application for determining where file replicas are stored.
- An application for auto-discovery and building virtual tree of healthy nodes [1].
- An application for exposing basic web interface (not finished).
- [1] I. Gankevich, Yu. Tipikin, and V. Gaiduchok. 2015. Subordination: Cluster management without distributed consensus. In *International Conference on High Performance Computing Simulation (HPCS)*. 639–642.

Theorising

Our approach


Test results

NDBC dataset

Dataset size 144MB
Dataset size (uncompressed) 770MB
Number of wave stations 24
Time span 3 years (2010–2012)
Total number of spectra 445422

- ▶ High 1:5 compression ratio,
- the spectra are stored using 5 variables,
- text-based file format.

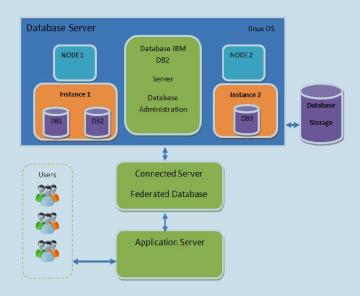
The algorithm

Reconstruction formula:

$$S(\omega, \theta) = \frac{1}{\pi} \left[\frac{1}{2} + r_1 \cos(\theta - \alpha_1) + r_2 \cos(2(\theta - \alpha_2)) \right] S_0(\omega).$$

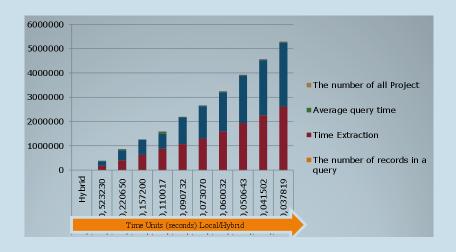
Comparison to Hadoop

Setup


Hadoop version 2.3.0
Hadoop nodes 3
RAM (GB) 4
CPU Intel Q9650
No. of cores 4
Core freq. (GHz) 3.0
OS Debian 7.5

Hadoop \approx 1000 spec./sec. Factory \approx 7000 spec./sec.

Reference: I. Gankevich, A. Degtyarev Efficient processing and classification of wave energy spectrum data with a distributed pipeline. *Computer Research and Modeling* 7, 3 (2015), 517–520.


Database test setup

Database test results

Record	d of s.	# of	Extract	tion time	Avg. qu	ery time	# of
local	hybrid	rec.	local	hybrid	local	hybrid	proj.
0.53	0.52	1	178	183	1.80	1.83	100
0.23	0.22	2	406	412	4.09	4.12	200
0.14	0.16	3	622	627	6.24	6.27	300
0.10	0.11	4	881	884	8.82	8.84	400
0.09	0.09	5	1075	1099	10.96	10.99	500
0.07	0.07	6	1306	1330	13.06	13.08	600
0.06	0.06	7	1600	1604	16.01	16.04	700
0.05	0.05	8	1941	1944	19.41	19.44	800
0.04	0.04	9	2263	2265	22.62	22.65	900
0.03	0.03	10	2620	2622	26.20	26.22	1000

Database test results

Theorising

Our approach

Test results

Scott McNealy: Network is a computer.

Scott McNealy: Network is a computer.

Anonymous: Then data is network traffic!

Thank you for attention!