Liquid argon veto for the GERDA experiment

Egor Shevchik For the GERDA collaboration

GERDA setup location

GERDA setup (Phase II)

Fiber shroud (old design)

Background suppression with LAr veto

- Almost pure $2\nu\beta\beta$ spectrum after LAr veto cut (600-1300 keV)
- LAr veto cut signal acceptance 97.7(1)%

²²⁸Th calibration

	SF(data)	SF (MC)
top PMTs	4.7 ± 0.1	43.3 ± 0.5
bot PMTs	12.9 ± 0.1	46.1 ± 0.6
all PMTs	22.5 ± 0.3	68.0 ± 1.0
SiPMs	48.0 ± 0.9	97.0 ± 1.7
all	60.0 ± 1.2	97.4 ± 1.7

- \Rightarrow SF and pe yield significantly lower than predicted by MC simulations
- possible reasons:
 - fiber implementation in MC
 - optical properties

The LAr-veto modules upgrade

- WLS optical fibers amount increased from 54 to 81 (per module) for better light collection
- Light is collected with 9 SiPMs instead of 6
- Using of synthetic quartz for SiPMs placement instead of the acrylic pieces

 Copper holders with reduced mass produced with high-purity materials

The modules assembling

Produced and installed:

- 9 double modules
- 2 single modules

Tests provided:

- Etching of quartz pieces and evaporating of aluminum layers
- TPB evaporating at the WLS fibers
- Electrical tests of the SiPM arrays

LAr-veto tests

First cryotests of the double module with 9 SiPM array and PMT R11065-20 at TUM liquid argon cryostat (Munich)

LAr-veto installation

From GERDA to LEGEND

LEGEND (Large Enriched Germanium Experiment for Neutrinoless Double Beta Decay) – This collaboration is the combination of GERDA + Majorana + some other new groups around the globe. <u>To be done:</u>

LEGEND 200 First stage:

- (up to) 200 kg of HPG inn upgraded GERDA experimental setup
- Goal for the BI: 3-5 times better than current GERDA BI
- New LAr veto shroud with better Suppression Factor

LEGEND 1000 Second stage:

- 1000 kg of HPGe
- Location to be determined
- Goal for the BI: ~30 times better than current GERDA BI
- New improved LAr veto instrumentation design

<u>The LEGEND collaboration aims to improve the ⁷⁶Ge half-life discovery level to 10^{27} yr (3 σ) in its first phase with further improvement to 10^{28} yr in its second phase.</u>

Individual shroud for the central string – first design

<u>Motivation</u>: Replacement of the PMT's with high background contamination and increasing of light collection (current light collection less then 1%). The way to LEGEND LAr veto technique.

The VII Annual Conference of Young Scientists and Specialists

Individual shroud for the central string – final design

Silicon rings with lower background contribution instead of copper ones

<u>Motivation</u>: Replacement of the PMT's with high background contamination and increasing of light collection (current light collection less then 1%). The way to LEGEND LAr veto technique.

Individual shroud for the central string – installation

Thank you for your attention

Background suppression with PSD

- Both K lines and high energy α events strongly suppressed
- High $0\nu\beta\beta$ signal efficiency(71.2 ± 4.3)% for Coax and (87.6 ± 2.5)% for BEGe detectors

The VII Annual Conference of Young Scientists and Specialists

'Alushta-2018", 11 - 18 June 2018

Background index

Coax*: $5.7^{+4.1}_{-2.6} \cdot 10^{-4} \text{ cts/(keV·kg·yr)}$

BEGe: $5.6^{+3.4}_{-2.4} \cdot 10^{-4} \text{ cts/(keV·kg·yr)}$

*Coax: new dataset with improved PSD BEGe: full Phase II dataset

Background index window: 1930-2190 keV, excl. ± 5 keV around two known γ lines and around $Q_{\beta\beta}$

Coax*: $5.7^{+4.1}_{-2.6} \cdot 10^{-4} \text{ cts/(keV·kg·yr)}$

BEGe: 5.6^{+3.4}/_{-2.4} ·10⁻⁴ cts/(keV·kg·yr)

One new event in the BEGe dataset with energy 2042 keV

Statistical analysis

- Total exposure 82.4 kg·yr incl. Phase I
- Combined fit of 7 datasets \rightarrow flat background + gaussian signal

Dataset	Exposure [kg·yr]	FWHM [keV]	ε	BI [10 ⁻³ cts/(keV·kg·yr)]
Phase I golden	17.9	4.3 ± 0.1	0.57 ± 0.03	11 ± 2
Phase I silver	1.3	4.3 ± 0.1	0.57 ± 0.03	30 ± 10
Phase I BEGe	2.4	2.7 ± 0.2	0.66 ± 0.02	5.0^{+4}_{-3}
Phase I extra	1.9	4.2 ± 0.2	0.58 ± 0.04	5.0^{+4}_{-3}
Phase II coax-1	5.0	3.6 ± 0.1	0.52 ± 0.04	$3.5^{+2.5}_{-1.5}$
Phase II coax-2	23.1	3.6 ± 0.1	0.48 ± 0.04	$0.6^{+0.4}_{-0.3}$
Phase II BEGe	30.8	3.0 ± 0.1	0.60 ± 0.02	$0.6_{-0.2}^{+0.4}$

Limits on half-life

Frequentist analysis

- Best fit \rightarrow no signal
- $T_{1/2} > 0.9 \cdot 10^{26} \text{ yr (90\% CL)}$

Bayesian analysis

Best fit \rightarrow background only T_{1/2} > 0.8·10²⁶ yr (90% CI)