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Introduction



The critical point of QGP to hadronic matter transition
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Fluctuations of centrality

The critical point can be found (if it exists) by analysis of the
fluctuations of centrality
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The scheme of NA61/SHINE

The centrality is measured by using only forward energy from the
Projectile Spectator Detector (PSD)
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SHIELD MC + GEANT4 model of PSD (Li7 + Be9). We have a dataset
of 80000 minimum bias events
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The reality behind measurements
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What we measure vs. what we want to measure

The problems are based on energy leakage, sandwich structure,

electronics resolution and existence of matter between the PSD and the

target



Cut-based analysis

Let's choose 15.8% most central events (both by Eie and Epeas). The
accuracy e is calcutated as e = TP+ TN/(TP + TN + FP + FN)
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Cut-based analysis

Let's choose 15.8% most central events (both by E;e and Epeas). The
accuracy e is calcutated as e = TP+ TN/(TP + TN + FP + FN)
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NAG61/SHINE’s PSD data as pictures

In fact, data from the PSD can be considered as 3D pics, so that we can
try to use convolutional neural networks for analysis
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Machine learning in HEP



What is it all about...

A modern and multipurpose method of solving various problems

Kaenbyou
60+ hours on 16 GPU nvidia CUDA cluster.
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The tasks for ML

Classification Instance
+ Localization

Classification Object Detection

Segmentation
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CAT, DOG, DUCK CAT, DOG, DUCK

Image processing
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The tasks for ML
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Convolutional Neural Networks

The concept of CNN is motivated by the way a real eye works
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Cat-Dog classification with CNN (source:
https://sourcedexter.com/quickly-setup-tensorflow-image-recognition/) 0



Convolutional Neural Networks

A concept of CNN is motivated by the way a real eye works

IS THIS A

CAT2DOG?

(-1x3) + (0x0) + (1x1) +
(-2x2) + (0x6) + (2x2) +
(-1x2) + (0x4) + (1x1) = 3

Convolution explained
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Machine learning... in HEP?

ML takes care of Big Data

h Computer v
256 Feature Maps

Leared variations on the
original image

Selecting v,'s and v,/s wit

Input Image

+ Weuse a convolutional neural network based on the GoogLeNet.
Successive layers of “feature maps” create variants of the original image
which enhance different features at growing levels of abstraction.

+ Multi-label classifier — the same network used in multiple analyses.

A. Aurisano and A. Radovic and D. Rocco et. al,
JINST 11 P0001 (2016)

JETP seminar “First Oscillation Results from NOvA”, 2018
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Results and comparison




Basically, we want to distinguish two classes of centrality: a) 15.8% of
most central events, b) others. The dataset of 80000 minimum bias
events is obtained with SHIELD MC + GEANT4 model of PSD (Li7 +
Be9), 60k are for training, 20k are for validation.

The modules we choose

Only the central "+"-shaped set of PSD modules are of interest, as it is

on the experiment
13



Imperfection of the simulations

e No matter between target and PSD :(
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Imperfection of the simulations

e No matter between target and PSD :(

e The electronics are not simulated :((
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Definition of centrality

Defining centrality

(labeling)
By number of ‘_>12n0u§:€€:esn:£gv: By forward
spectators (0-3, energy (0-719.67,
4-7 for 2 ClaSSGS) nucleons; ions |——»f >71 967)

Therefore, 2 CNN models were trained (CNNn and
CNNe)

15



Histogram analysis (by energy)
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CNN separation (1st class, CNNe)

1st class
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The events the CNN considered to be from the 1st class
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CNN separation (2nd class, CNNe)

2nd class
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The events the CNN considered to be from the 2nd class
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nalysis (by spectators)
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CNN separation (1st class, CNNn)
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The events the CNN considered to be from the 1st class
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CNN separation (2nd class, CNNn)

2nd class
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Accuracy of the CNN

CNN shows better results in accuracy, especially in the task of Ngpec

classification

Forward energy | Nspec
Cut-based | 93.0% 86.7%
CNN 93.7% 92.8%
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Average multiplicities and variances

The (N) and w values were calculated for the events from the 1st
centrality class. Here centrality = forward energy

(N) w
Forward energy | 19.59 6.07
Cut-based 18.56 7.02
CNNe 18.69 6.82

By forward energy
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Average multiplicities and variances

The (N) and w values were calculated for the events from the 1st
centrality class; centrality = number of spectators

(N) w
L 15.69 7.58
Cut-based 18.56 7.02
CNNn 16.36 7.35

By number of spectators
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Conclusions




|. Cross-validation on different MC
[1. Modifications of the CNN

[Il. Implementation to the real data
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Implementation to other experiments!

Moreover, such CNN can be used in other experiments like NICA or
FAIR, since they have pretty similar calorimeters

Facility for Antiproton
and lon Research
in Europe GmbH
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A simple neural net

The most popular way to create A.l. today is to develop a clever enough
artifical neural network. Here is the example of one.

A
2 ///
INPUT HIDDEN OouTPUT
LAYER LAYER LAYER a=c
A very simple ANN ELU and RELU functions
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CNN architecture

We vary the parameters of the neural network in order to achieve superior

accuracy.

#1-5 #1-3
N L

r Al
C is the number of +Dropout
channels or features

Conv3d (3x3x3xC or Sigmoid
3x3x5xC) with FC (256-2043) crossentropy with Cutput

MaxPool (2x2) logits

Adam EImHTIIZEF

CNN for centrality classification
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CNN architecture, but much simpler

In order to understand the concept of training, consider a simplified

model
- N \W - N
X y4 J » SCE
s N N | > ~
W X Adam
N . )L J |

Backpropagation

The X and z pair is the input data and labels respectively, w is the
weight multitensor, x is a prediction, SCE stands for “sigmoid
crossentropy”, Adam is the optimizer
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Sigmoid crossentropy

In binary classification, the loss function can be calculated in this way:
L(x,z) = —z-logo(x) — (1 —z) - log(1l — o(x)),

o(x) =1/(1+ exp(—x)).

x is a prediction (x = x(W, X) — function of weights w and input data
X), z is a label
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The parameters update iteratively as follows:

t:=t+1;

e i=le—1 - /1= B5/(1 - B1);
My = P1 - M1+ (1= P1) - Ge—1;
0= B2 01+ (1— f2)- 871
W o= Wt — b - 1/ (1/% + €);

where t is epoch number, $; and 3, are momenta, /; is learning rate, m;
is “moving average” of gradient, ¥; is “moving average” of squared
gradient, W, is some value (weight) and g;—1 = dL(x,z)/dW at

x = x(Wy—1, X¢—1) and z = z;_1 with respect to all the weights
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Data and CNN parameters

e Two classes: 0-3 and 4-7 spectators (15.8% centrality), 99500
events (15687 and 83813 respectively)
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Data and CNN parameters

e Two classes: 0-3 and 4-7 spectators (15.8% centrality), 99500
events (15687 and 83813 respectively)

e The best perfomance was obtained with the dropout rate parameter
set as 0.1 (only 10% of FC neurons remain unzeroed)

e 1 conv layer with 128 features (3x3x5)
e 1 max pool (2x2)

e 1 FC layer with 1024 neurons

e Learning rate 5*1le-4

e Batch size 100
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Accuracy and loss

Two classes: 0-3 and 4-7 spectators (15.8% centrality), 99500 events

(15687 and 83813 respectively)
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ROC-curve and comparison with other ml methods

Measuring area under a ROC-curve is another method of defining the

accuracy.

True positive rate
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AdaBoost nEst=100, depth=1 (area = 0.92)
KNN5 (area = 0.90)

—— KNN20 (area = 0.93)

—— linear discr. (area = 0.88)

—— quadratic discr. (area = 0.86)

—— NN tuned (area = 0.96)

CNN with Emeas (area = 0.97)
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comparison of ROC-curves given different ml methods
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