

REACTOR ELECTRON ANTINEUTRINO

Maxim Gonchar

Joint Institute for Nuclear Research

Baikal School October 24, 2020

1 INTRODUCTION

- Particle physics
- Neutrino
- 2 REACTOR NEUTRINO
- Reactor $\overline{\nu}$ oscillations
- IBD selection
- Light production and detection
- Reactor neutrino questions
- 3 NEUTRINO OBSERVATION
 - Atomic bomb
 - Detector Herr Auge
 - Savannah River experiment
- 4 NEUTRINO SPECTRUM
 - Summation method

- Conversion method: ILL
- Huber and Mueller
- Current status
- Summary
- 5 NEUTRINO OSCILLATIONS
 - Neutrino masses and mixing
 - Reactor $\overline{\nu}$ oscillations
 - KamLAND: Δm_{21}^2
 - Daya Bay, RENO and Double CHOOZ: θ_{13} and Δm^2_{32}
 - Sterile neutrino
 - Neutrino mass ordering
- 6 SUMMARY

ELEMENTARY PARTICLES

Standard Model of Elementary Particles

Particles Neutrino

ELEMENTARY PARTICLES

Neutrino

- Neutrino production (example): beta decay
- Neutrino flavor: neutrino interaction state

ELEMENTARY PARTICLES

Standard Model of Elementary Particles

Neutrino

- Mass state \neq interaction state.
- Flavor: how neutrino interacts.

Massive and flavored neutrinos

NEUTRINO PROPERTIES

Properties

- Neutral, spin 1/2
- Almost massless: $0 \lesssim m_
 u \lesssim 10^{-6} m_e$
- Interact only weakly
 - \sim 1'000'000 suns before interaction (1 MeV)

- Strongly mixes
- Oscillates (in an observable way)
- May be it's own antiparticle
 - only possible for neutrino

NEUTRINO MIXING AND OSCILLATIONS

Mixing

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} 3D \text{ rotation matrix} \\ \text{with 3 angles}^*: \\ \theta_{e2}, \theta_{e3}, \theta_{\mu3}, i\delta_{CP} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$
Pontecorvo-Maki-Nakagawa-Sakata (PMNS)

Oscillations

- Mixing angles θ_{12} , θ_{23} , θ_{13} : flavor composition
- Mass splitting Δm^2_{32} , Δm^2_{21} : location of maximum
- At least two neutrinos have nonzero mass
- $\delta_{\rm CP}$ differences neutrino/antineutrino

Particles Neutrino

NEUTRINO SOURCES

Particles Neutrino

NEUTRINO SOURCES

10¹⁴ neutrinos are passing you per second at any given time at the speed of light.

($\sim 100'000'000'000$ particles/second)

1 INTRODUCTION

2 REACTOR NEUTRINO

- Reactor $\overline{\nu}$ oscillations
- IBD selection
- Light production and detection
- Reactor neutrino questions
- **3** NEUTRINO OBSERVATION
- **4** NEUTRINO SPECTRUM
- **5** NEUTRINO OSCILLATIONS

6 SUMMARY

Reactor $\overline{\nu}$ IBD Light Questions

126

82

50

28

14

Reactor $\overline{\nu}_e$ production and detection

(Number of Protons)

Reactor $\overline{\nu}$ IBD Light Questions

Reactor $\overline{\nu}_e$ production and detection

235U 236U ⊙→+ 🏀 → 🏀

Reactor $\overline{\nu}$ IBD Light Questions

Reactor $\overline{\nu}_e$ production and detection

Reactor $\overline{\nu}$ IBD Light Questions

Reactor $\overline{\nu}_e$ production and detection

Reactor $\overline{\nu}$ IBD Light Questions

Reactor $\overline{\nu}_e$ production and detection

Reactor $\overline{\nu}_e$ production

in beta decays of fission products of

• 235 U, 239 Pu and 241 Pu (slow *n*)

• ²³⁸U

(fast n)

Reactor $\overline{\nu}$ IBD Light Questions

Reactor $\overline{\nu}_e$ production and detection

Reactor $\overline{\nu}$ IBD Light Questions

Reactor $\overline{\nu}_e$ production and detection

Reactor $\overline{\nu}$ IBD Light Questions

Reactor $\overline{\nu}_e$ production and detection

Maxim Gonchar (DLNP, JINR)

NUCLEAR REACTOR TYPES

Industrial reactors

- Size: ~ 3 m
- ✓ Thermal power:

 \sim 3 GW

- Fuel: composite
- Spectrum: complex, time dependant
- "Free" to use for science
- Safety restrictions

NUCLEAR REACTOR TYPES

Industrial reactors

- Size: $\sim 3 \,\mathrm{m}$
- ✓ Thermal power:

 $\sim 3 \, \mathrm{GW}$

- Fuel: composite
- Spectrum: complex, time dependant
- "Free" to use for science
- Safety restrictions

Research reactors

• Size:	$< 1{ m m}$
 Thermal power: 	< 100 MW
• Fuel:	pure $^{235}\mathrm{U}$
✓ Spectrum:	simple

Reactor $\overline{\nu}$ IBD Light Questions

(h) 🙈

Reactor $\overline{\nu}$ IBD Light Questions

Reactor $\overline{\nu}$ IBD Light Questions

INVERSE BETA DECAY AND SELECTION CRITERIA

Commonly used capture targets

INVERSE BETA DECAY AND SELECTION CRITERIA

Bay

Daya

5% \vee

Cherenkov:

/ 54

		C	B Near S/N	$DB\;Far\;S/N$	Unc.	JUNO S/N	Unc.
•	IBD	events/AD	635	75		45	
•	Geo v	%	negligible	negligible	negligible	2.4	30
•	Accidentals	%	1.3	1.6	1	2.0	negligible
•	⁸ He/ ⁹ Li	%	0.3	0.2	30	3.6	20
•	Fast neutrons	%	0.08	0.07	17	0.3	100
•	241 Am- 13 C	%	0.03	0.07	45	no	no
•	$^{13}\mathrm{C}(lpha, \mathbf{\textit{n}})^{16}\mathrm{O}$	%	0.01	0.07	50	0.1	50
•	Total bkg	%	1.72	2.01		8.6	
Ace	cidentals	β - n isotopes	Fast	neutrons	AC	U	$^{13}\mathrm{C}(\alpha, n)^{16}\mathrm{C}$
	Maxim Gonchar (DLNP, JIN	NR)	Re	actor $\overline{\nu}_e$		(October 24, 2020 11a

54

		D	B Near S/N	$DB \; Far \; S/N$	Unc.	JUNO S/N	Unc.
•	IBD	events/AD	635	75		45	
•	Geo v	%	negligible	negligible	negligible	2.4	30
•	Accidentals	%	1.3	1.6	1	2.0	negligible
٠	8 He $/^{9}$ Li	%	0.3	0.2	30	3.6	20
٠	Fast neutrons	%	0.08	0.07	17	0.3	100
٠	241 Am- 13 C	%	0.03	0.07	45	no	no
٠	$^{13}\mathrm{C}(lpha, \textit{n})^{16}\mathrm{O}$	%	0.01	0.07	50	0.1	50
•	Total bkg	%	1.72	2.01		8.6	
Ac	cidentals	β - n isotopes	Fast	neutrons	AC	U	$^{13}\mathrm{C}(\alpha, n)^{16}\mathrm{C}$
$\gamma^{\mathbf{N}}$							
	Maxim Gonchar (DLNP, JIN	NR)	Rea	actor $\overline{\nu}_e$		(October 24, 2020 11b

			DB Near S/N	$DB\ Far\ S/N$	Unc.	JUNO S/N	Unc.
•	IBD	events/AD	635	75		45	
•	Geo v	%	negligible	negligible	negligible	2.4	30
٠	Accidentals	%	1.3	1.6	1	2.0	negligible
•	8 He $/^{9}$ Li	%	0.3	0.2	30	3.6	20
•	Fast neutrons	%	0.08	0.07	17	0.3	100
•	241 Am- 13 C	%	0.03	0.07	45	no	no
•	$^{13}\mathrm{C}(lpha, \mathbf{\textit{n}})^{16}\mathrm{O}$	%	0.01	0.07	50	0.1	50
•	Total bkg	%	1.72	2.01		8.6	
Ace	cidentals	β - n isotopes	s Fast i	neutrons	AC	U	$^{13}\mathrm{C}(\alpha, \mathbf{n})^{16}\mathrm{O}$
γ	β, γ						
	Maxim Gonchar (DLNP, JIN	NR)	Rea	actor $\overline{\nu}_e$		(October 24, 2020 11c / 54

			$DB\ Near\ S/N$	$DB\ Far\ S/N$	Unc.	JUNO S/N	Unc.
•	IBD	events/AD	635	75		45	
٠	Geo v	%	negligible	negligible	negligible	2.4	30
٠	Accidentals	%	1.3	1.6	1	2.0	negligible
•	⁸ He/ ⁹ Li	%	0.3	0.2	30	3.6	20
•	Fast neutrons	%	0.08	0.07	17	0.3	100
•	²⁴¹ Am- ¹³ C	%	0.03	0.07	45	no	no
•	$^{13}\mathrm{C}(lpha, \textit{n})^{16}\mathrm{O}$	%	0.01	0.07	50	0.1	50
٠	Total bkg	%	1.72	2.01		8.6	
Aco	cidentals	β - n isotope	es Fast	neutrons	AC	U	$^{13}\mathrm{C}(lpha, \mathbf{\textit{n}})^{16}\mathrm{O}$
γ \	$\int \beta, \gamma$						
	Maxim Gonchar (DLNP, JIN	IR)	Rea	actor $\overline{\nu}_e$		C	October 24, 2020 11d / 54

			$DB\ Near\ S/N$	$DB\ Far\ S/N$	Unc.	JUNO S/N	Unc.
•	IBD	events/AD	635	75		45	
•	Geo v	%	negligible	negligible	negligible	2.4	30
•	Accidentals	%	1.3	1.6	1	2.0	negligible
•	⁸ He/ ⁹ Li	%	0.3	0.2	30	3.6	20
•	Fast neutrons	%	0.08	0.07	17	0.3	100
•	241 Am- 13 C	%	0.03	0.07	45	no	no
•	$^{13}\mathrm{C}(lpha, \mathbf{\textit{n}})^{16}\mathrm{O}$	%	0.01	0.07	50	0.1	50
•	Total bkg	%	1.72	2.01		8.6	
Ace	cidentals	eta - n isotop $^{8}\mathrm{He}/^{9}\mathrm{Li}$	es Fast $/\mu$	neutrons	AC	U	$^{13}\mathrm{C}(\alpha, n)^{16}\mathrm{O}$
γ	β, γ						
	Maxim Gonchar (DLNP, JIN	IR)	Re	actor $\overline{\nu}_e$		(October 24, 2020 11e / 54

		$DB\ Near\ S/N$	$DB\ Far\ S/N$	Unc.	JUNO S/N	Unc.
• IBD	events/AD	635	75		45	
 Geo ν 	%	negligible	negligible	negligible	2.4	30
 Accidentals 	%	1.3	1.6	1	2.0	negligible
● ⁸ He/ ⁹ Li	%	0.3	0.2	30	3.6	20
 Fast neutrons 	%	0.08	0.07	17	0.3	100
• 241 Am- 13 C	%	0.03	0.07	45	no	no
• ${}^{13}C(\alpha, n){}^{16}O$	%	0.01	0.07	50	0.1	50
• Total bkg	%	1.72	2.01		8.6	
Accidentals	eta - n isotopes ${ m ^8He}/{ m ^9Li}$	s Fast ,′μ	neutrons	AC	U	$^{13}\mathrm{C}(\alpha, n)^{16}\mathrm{O}$
$\gamma \int \beta, \gamma$						
Maxim Gonchar (DLNP, JII	NR)	Rea	actor $\overline{\nu}_e$		(October 24, 2020 11f / 54

		DB Near S/N	$DB\ Far\ S/N$	Unc.	JUNO S/N	Unc.
• IBD	events/AD	635	75		45	
• Geo ν	%	negligible	negligible	negligible	2.4	30
 Accidentals 	%	1.3	1.6	1	2.0	negligible
● ⁸ He/ ⁹ Li	%	0.3	0.2	30	3.6	20
 Fast neutrons 	%	0.08	0.07	17	0.3	100
• ²⁴¹ Am- ¹³ C	%	0.03	0.07	45	no	no
• ${}^{13}C(\alpha, n){}^{16}O$	%	0.01	0.07	50	0.1	50
Total bkg	%	1.72	2.01		8.6	
Accidentals	eta - n isotopes ${ m ^8He}/{ m ^9Li}$	Fast i	neutrons	AC	U	${}^{13}\mathrm{C}(\alpha, n){}^{16}\mathrm{O}$
$\gamma \beta, \gamma$	β					
Maxim Gonchar (DLNP, JIN	IR)	Rea	actor $\overline{\nu}_e$		C	october 24, 2020 11g / 54

		$DB\ Near\ S/N$	$DB\ Far\ S/N$	Unc.	JUNO S/N	Unc.
• IBD	events/AD	635	75		45	
 Geo ν 	%	negligible	negligible	negligible	2.4	30
 Accidentals 	%	1.3	1.6	1	2.0	negligible
• ⁸ He/ ⁹ Li	%	0.3	0.2	30	3.6	20
Fast neutrons	%	0.08	0.07	17	0.3	100
• ²⁴¹ Am- ¹³ C	%	0.03	0.07	45	no	no
• ${}^{13}C(\alpha, n){}^{16}O$	%	0.01	0.07	50	0.1	50
Total bkg	%	1.72	2.01		8.6	
Accidentals	eta - n isotope ${}^{8}\mathrm{He}/{}^{9}\mathrm{Li}$	s Fast	neutrons	AC	U	${}^{13}\mathrm{C}(\alpha, n){}^{16}\mathrm{O}$
$\gamma \int \beta, \gamma$	ß nGd					
Maxim Gonchar (DLNP, JI	INR)	Rea	actor $\overline{\nu}_e$		C	October 24, 2020 11h / 54

			$DB\ Near\ S/N$	$DB \; Far \; S/N$	Unc.	JUNO S/N	Unc.
٠	IBD	events/AD	635	75		45	
•	Geo v	%	negligible	negligible	negligible	2.4	30
•	Accidentals	%	1.3	1.6	1	2.0	negligible
•	8 He $/^{9}$ Li	%	0.3	0.2	30	3.6	20
•	Fast neutrons	%	0.08	0.07	17	0.3	100
•	241 Am- 13 C	%	0.03	0.07	45	no	no
•	$^{13}\mathrm{C}(lpha, \mathbf{\textit{n}})^{16}\mathrm{O}$	%	0.01	0.07	50	0.1	50
•	Total bkg	%	1.72	2.01		8.6	
Ac	cidentals	eta - n isotop $^{8}\mathrm{He}/^{9}\mathrm{Li}$	es Fast	neutrons μ	AC	U	$^{13}\mathrm{C}(\alpha, \mathbf{\textit{n}})^{16}\mathrm{O}$
γ	β, γ	ß				,	
	Maxim Gonchar (DLNP, JIN	NR)	Re	actor $\overline{\nu}_e$			October 24, 2020 11i / 54

		DB Near S/N	$DB \; Far \; S/N$	Unc.	JUNO S/N	Unc.
• IBD	events/AD	635	75		45	
 Geo ν 	%	negligible	negligible	negligible	2.4	30
 Accidentals 	%	1.3	1.6	1	2.0	negligible
• ⁸ He/ ⁹ Li	%	0.3	0.2	30	3.6	20
 Fast neutrons 	%	0.08	0.07	17	0.3	100
• ²⁴¹ Am- ¹³ C	%	0.03	0.07	45	no	no
• ${}^{13}C(\alpha, n){}^{16}O$	%	0.01	0.07	50	0.1	50
• Total bkg	%	1.72	2.01		8.6	
Accidentals	eta - n isotopes ${ m ^8He}/{ m ^9Li}$	s Fast ι	neutrons μ	AC	U	${}^{13}\mathrm{C}(\alpha, \mathbf{\textit{n}}){}^{16}\mathrm{O}$
$\gamma \sum_{\beta,\gamma}$	ß nGd					
Maxim Gonchar (DLNP, JIN	NR)	Rea	$\overline{\nu}_e$		(October 24, 2020 11j / 54

		I	DB Near S/N	DB Far S/N	Unc.	JUNO S/N	Unc.
٠	IBD	events/AD	635	75		45	
•	Geo v	%	negligible	negligible	negligible	2.4	30
•	Accidentals	%	1.3	1.6	1	2.0	negligible
•	$^{8}\mathrm{He}/^{9}\mathrm{Li}$	%	0.3	0.2	30	3.6	20
•	Fast neutrons	%	0.08	0.07	17	0.3	100
•	241 Am- 13 C	%	0.03	0.07	45	no	no
•	$^{13}\mathrm{C}(lpha, \mathbf{\textit{n}})^{16}\mathrm{O}$	%	0.01	0.07	50	0.1	50
٠	Total bkg	%	1.72	2.01		8.6	
Accidentals β - <i>n</i> isotopositive β - <i>n</i> i		eta - n isotopes ${ m ^8He}/{ m ^9Li}$	Fast	neutrons μ	AC	U	$^{13}\mathrm{C}(\alpha, n)^{16}\mathrm{O}$
γ	β, γ	ß nGd		n P			
	Maxim Gonchar (DLNP, JIN	NR)	Rea	actor $\overline{\nu}_e$		C	October 24, 2020 11k / 54

/ 54

		DB Near S/N	$DB \; Far \; S/N$	Unc.	JUNO S/N	Unc.
• IBD	events/AD	635	75		45	
 Geo ν 	%	negligible	negligible	negligible	2.4	30
 Accidentals 	%	1.3	1.6	1	2.0	negligible
● ⁸ He/ ⁹ Li	%	0.3	0.2	30	3.6	20
Fast neutrons	%	0.08	0.07	17	0.3	100
• 241 Am- 13 C	%	0.03	0.07	45	no	no
• ${}^{13}C(\alpha, n){}^{16}O$	%	0.01	0.07	50	0.1	50
• Total bkg	%	1.72	2.01		8.6	
Accidentals	eta - n isotopes ${ m ^8He}/{ m ^9Li}$	Fast	neutrons μ	AC	U	$^{13}\mathrm{C}(\alpha, \mathbf{n})^{16}\mathrm{C}$
$\gamma \int \beta, \gamma$	β nGd	nGd	p			
Maxim Gonchar (DLNP, JI	NR)	Rea	actor $\overline{\nu}_e$			October 24, 2020 111

		DE	3 Near S/N	$DB\;Far\;S/N$	Unc.	JUNO S/N	Unc.
•	IBD	events/AD	635	75		45	
•	Geo v	%	negligible	negligible	negligible	2.4	30
•	Accidentals	%	1.3	1.6	1	2.0	negligible
•	⁸ He/ ⁹ Li	%	0.3	0.2	30	3.6	20
•	Fast neutrons	%	0.08	0.07	17	0.3	100
•	241 Am- 13 C	%	0.03	0.07	45	no	no
٠	$^{13}\mathrm{C}(lpha, \mathbf{\textit{n}})^{16}\mathrm{O}$	%	0.01	0.07	50	0.1	50
•	Total bkg	%	1.72	2.01		8.6	
Ac	cidentals	eta - n isotopes ${}^{8}\mathrm{He}/{}^{9}\mathrm{Li}$	Fast	neutrons μ	AC	U	$^{13}\mathrm{C}(\alpha, n)^{16}\mathrm{C}(\alpha, n)^{16$
γ	1	β	nGo				

Maxim Gonchar (DLNP, JINR)

 β, γ

nGd

K

Reactor $\overline{\nu}_e$

Ď

			DB Near S/N	DB Far S/N	Unc.	JUNO S/N	Unc.
•	IBD	events/AD	635	75		45	
•	Geo v	%	negligible	negligible	negligible	2.4	30
•	Accidentals	%	1.3	1.6	1	2.0	negligible
٠	$^{8}\mathrm{He}/^{9}\mathrm{Li}$	%	0.3	0.2	30	3.6	20
•	Fast neutrons	%	0.08	0.07	17	0.3	100
٠	241 Am- 13 C	%	0.03	0.07	45	no	no
•	$^{13}\mathrm{C}(\alpha, n)^{16}\mathrm{O}$	%	0.01	0.07	50	0.1	50
•	Total bkg	%	1.72	2.01		8.6	

7

		ſ	OB Near S/N	$DB \; Far \; S/N$	Unc.	JUNO S/N	Unc.
•	IBD	events/AD	635	75		45	
•	Geo v	%	negligible	negligible	negligible	2.4	30
•	Accidentals	%	1.3	1.6	1	2.0	negligible
٠	⁸ He/ ⁹ Li	%	0.3	0.2	30	3.6	20
٠	Fast neutrons	%	0.08	0.07	17	0.3	100
٠	241 Am- 13 C	%	0.03	0.07	45	no	no
•	$^{13}\mathrm{C}(lpha, \mathbf{n})^{16}\mathrm{O}$	%	0.01	0.07	50	0.1	50
•	Total bkg	%	1.72	2.01		8.6	
Ac	cidentals	β - <i>n</i> isotopes	Fast	neutrons	AC	U <i>n</i>	$^{13}\mathrm{C}(lpha, \mathbf{\textit{n}})^{16}$
			$^{\mu}$	\longrightarrow^{μ}			

		DB Near S/N	DB Far S/N	Unc.	JUNO S/N	Unc.
IBD	events/AD	635	75		45	
Geo v	%	negligible	negligible	negligible	2.4	30
Accidentals	%	1.3	1.6	1	2.0	negligible
⁸ He/ ⁹ Li	%	0.3	0.2	30	3.6	20
Fast neutrons	%	0.08	0.07	17	0.3	100
241 Am- 13 C	%	0.03	0.07	45	no	no
$^{13}\mathrm{C}(lpha, \mathbf{n})^{16}\mathrm{O}$	%	0.01	0.07	50	0.1	50
Total bkg	%	1.72	2.01		8.6	
	IBDGeo vAccidentals 8 He/ 9 LiFast neutrons 241 Am- 13 C 13 C(α , n) 16 OTotal bkg	IBD events/AD Geo v % Accidentals % 8 He/ 9 Li % Fast neutrons % 241 Am- 13 C % 13 C(α , n) 16 O % Total bkg %	DB Near S/N IBD events/AD 635 Geo ν % negligible Accidentals % 1.3 ⁸ He/ ⁹ Li % 0.3 Fast neutrons % 0.08 ²⁴¹ Am- ¹³ C % 0.03 ¹³ C(α, n) ¹⁶ O % 0.01 Total bkg % 1.72	$\begin{tabular}{ c c c c c } \hline DB Near S/N & DB Far S/N \\ \hline DB Near S/N & DB Far S/N \\ \hline DB Near S/N & DB Far S/N \\ \hline DB Near S/N & DB Far S/N \\ \hline DB Near S/N & DB Far S/N \\ \hline DB Near S/N & DB Far S/N \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c c } \hline DB \ Near S/N & DB \ Far S/N & Unc. \\ \hline DB \ Near S/N & DB \ Far S/N & Unc. \\ \hline IBD & events/AD & 635 & 75 \\ \hline Geo \ v & \% & negligible & negligible & negligible \\ \hline Accidentals & \% & 1.3 & 1.6 & 1 \\ \ ^8 \ He/^9 \ Li & \% & 0.3 & 0.2 & 30 \\ \hline Fast neutrons & \% & 0.08 & 0.07 & 177 \\ \ ^{241} \ Am^{-13} \ C & \% & 0.03 & 0.07 & 455 \\ \ ^{13} \ C(\alpha, n)^{16} \ O & \% & 0.01 & 0.07 & 50 \\ \hline Total \ bkg & \% & 1.72 & 2.01 \\ \hline \end{tabular}$	DB Near S/NDB Far S/NUnc.JUNO S/NIBDevents/AD6357545Geo v%negligiblenegligiblenegligible2.4Accidentals%1.31.612.0 8 He/ 9 Li%0.30.2303.6Fast neutrons%0.080.07170.3 241 Am- 13 C%0.010.0745no 13 C(α, n) 16 O%1.722.018.6

		DB Near S/N	DB Far S/N	Unc.	JUNO S/N	Unc.
IBD	events/AD	635	75		45	
Geo v	%	negligible	negligible	negligible	2.4	30
Accidentals	%	1.3	1.6	1	2.0	negligible
⁸ He/ ⁹ Li	%	0.3	0.2	30	3.6	20
Fast neutrons	%	0.08	0.07	17	0.3	100
241 Am- 13 C	%	0.03	0.07	45	no	no
$^{13}\mathrm{C}(lpha, \mathbf{n})^{16}\mathrm{O}$	%	0.01	0.07	50	0.1	50
Total bkg	%	1.72	2.01		8.6	
	IBDGeo vAccidentals 8 He/ 9 LiFast neutrons 241 Am- 13 C 13 C(α , n) 16 OTotal bkg	IBD events/AD Geo v % Accidentals % 8 He/ 9 Li % Fast neutrons % 241 Am- 13 C % 13 C(α , n) 16 O % Total bkg %	DB Near S/N IBD events/AD 635 Geo ν % negligible Accidentals % 1.3 ⁸ He/ ⁹ Li % 0.3 Fast neutrons % 0.08 ²⁴¹ Am- ¹³ C % 0.03 ¹³ C(α, n) ¹⁶ O % 0.01 Total bkg % 1.72	$\begin{tabular}{ c c c c c } \hline DB Near S/N & DB Far S/N \\ \hline DB Near S/N & DB Far S/N \\ \hline DB Near S/N & DB Far S/N \\ \hline DB Near S/N & DB Far S/N \\ \hline DB Near S/N & DB Far S/N \\ \hline DB Near S/N & DB Far S/N \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c c } \hline DB \ Near S/N & DB \ Far S/N & Unc. \\ \hline DB \ Near S/N & DB \ Far S/N & Unc. \\ \hline IBD & events/AD & 635 & 75 \\ \hline Geo \ v & \% & negligible & negligible & negligible \\ \hline Accidentals & \% & 1.3 & 1.6 & 1 \\ \ ^8 \ He/^9 \ Li & \% & 0.3 & 0.2 & 30 \\ \hline Fast neutrons & \% & 0.08 & 0.07 & 17 \\ \ ^{241} \ Am^{-13} \ C & \% & 0.03 & 0.07 & 45 \\ \ ^{13} \ C(\alpha, n)^{16} \ O & \% & 0.01 & 0.07 & 50 \\ \hline Total \ bkg & \% & 1.72 & 2.01 \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c c } \hline DB Near S/N & DB Far S/N & Unc. & JUNO S/N \\ \hline BD & events/AD & 635 & 75 & 45 \\ \hline IBD & events/AD & 635 & 75 & 45 \\ \hline $Geo v & \%$ & negligible & negligible & negligible & 2.4 \\ Accidentals & \% & 1.3 & 1.6 & 1 & 2.0 \\ $^8 He/^9 Li$ & \% & 0.3 & 0.2 & 30 & 3.6 \\ \hline $Fast neutrons & \% & 0.08 & 0.07 & 177 & 0.3 \\ $^{241} Am^{-13} C$ & \% & 0.03 & 0.07 & 455 & no \\ $^{13} C(\alpha, n)^{16} O$ & \% & 0.01 & 0.07 & 50 & 0.1 \\ \hline $Total bkg$ & \% & 1.72 & 2.01 & 8.6 \\ \hline \end{tabular}$

			DB Near S/N	DB Far S/N	Unc.	JUNO S/N	Unc.
٠	IBD	events/AD	635	75		45	
•	Geo v	%	negligible	negligible	negligible	2.4	30
•	Accidentals	%	1.3	1.6	1	2.0	negligible
•	⁸ He/ ⁹ Li	%	0.3	0.2	30	3.6	20
٠	Fast neutrons	%	0.08	0.07	17	0.3	100
•	241 Am- 13 C	%	0.03	0.07	45	no	no
٠	$^{13}\mathrm{C}(lpha, \mathbf{n})^{16}\mathrm{O}$	%	0.01	0.07	50	0.1	50
•	Total bkg	%	1.72	2.01		8.6	

			DB Near S/N	DB Far S/N	Unc.	JUNO S/N	Unc.
•	IBD	events/AD	635	75		45	
•	Geo v	%	negligible	negligible	negligible	2.4	30
•	Accidentals	%	1.3	1.6	1	2.0	negligible
•	8 He $/^{9}$ Li	%	0.3	0.2	30	3.6	20
•	Fast neutrons	%	0.08	0.07	17	0.3	100
•	241 Am- 13 C	%	0.03	0.07	45	no	no
•	$^{13}\mathrm{C}(lpha, \mathbf{\textit{n}})^{16}\mathrm{O}$	%	0.01	0.07	50	0.1	50
•	Total bkg	%	1.72	2.01		8.6	
Δc	cidentals	β_{-n} isotope	s Fastu	neutrons	۵C		$^{13}C(\alpha n)^{16}$

SCINTILLATION AND CHERENKOV LIGHT

• Common scenario: neutrino interaction produces a single charged particle in a large volume

SCINTILLATION AND CHERENKOV LIGHT

Common scenario: neutrino interaction produces a single charged particle in a large volume

Cherenkov light

- Any transparent material
- Particle velocity > light velocity in matter
- Cherenkov cone
- Time distribution: 'immediate'

 \triangle Super Kamiokande muon event.

ATR reactor Cherenkov light ▷

SCINTILLATION AND CHERENKOV LIGHT

• Common scenario: neutrino interaction produces a single charged particle in a large volume

Scintillation light

- Special material: scintillator
- Energy: any
- Light direction: isotropic
- Time distribution: exponential decay scintillator (de)excitation takes some time ~ ns

- \checkmark Covered in this talk
- *Not* covered

Nuclear reactors

- ✓ Reactor $\overline{\nu}_e$ spectrum
- Reactor monitoring:

non proliferation of nuclear weapons

- \checkmark Covered in this talk
- Not covered

Nuclear reactors

- ✓ Reactor $\overline{\nu}_e$ spectrum
- Reactor monitoring:

non proliferation of nuclear weapons

Neutrino physics in general

- Anomalous neutrino magnetic moment
- Coherent elastic neutrino-nucleus scattering:

 $\hookrightarrow \mathsf{CE}\nu\mathsf{NS} \text{ not yet observed}$

- \checkmark Covered in this talk
- Not covered

Nuclear reactors

- ✓ Reactor $\overline{\nu}_e$ spectrum
- Reactor monitoring:

non proliferation of nuclear weapons

Neutrino physics in general

- Anomalous neutrino magnetic moment
- Coherent elastic neutrino-nucleus scattering:
 - $\hookrightarrow \mathsf{CE}\nu\mathsf{NS} \text{ not yet observed}$

Neutrino oscillations

- ✓ Precision oscillation parameters measurement: Δm_{21}^2 , $|\Delta m_{32}^2|$, θ_{13} , θ_{12} .
- ✓ Neutrino mass ordering (NMO).

- \checkmark Covered in this talk
- Not covered
- Nuclear reactors
 - ✓ Reactor $\overline{\nu}_e$ spectrum
 - Reactor monitoring:

non proliferation of nuclear weapons

Neutrino physics in general

- Anomalous neutrino magnetic moment
- Coherent elastic neutrino-nucleus scattering:
 - $\hookrightarrow \mathsf{CE}\nu\mathsf{NS} \text{ not yet observed}$

Neutrino oscillations

- ✓ Precision oscillation parameters measurement: Δm_{21}^2 , $|\Delta m_{32}^2|$, θ_{13} , θ_{12} .
- ✓ Neutrino mass ordering (NMO).

Related questions

• Geo-neutrino

- \checkmark Covered in this talk
- Not covered

Nuclear reactors

- ✓ Reactor $\overline{\nu}_e$ spectrum
- Reactor monitoring:

non proliferation of nuclear weapons

Neutrino physics in general

- Anomalous neutrino magnetic moment
- Coherent elastic neutrino-nucleus scattering:

 $\hookrightarrow \mathsf{CE}_{\nu}\mathsf{NS}$ not yet observed

Neutrino oscillations

- ✓ Precision oscillation parameters measurement: Δm_{21}^2 , $|\Delta m_{32}^2|$, θ_{13} , θ_{12} .
- ✓ Neutrino mass ordering (NMO).

Related questions

• Geo-neutrino

Absolutely unrelated questions

- $\bigstar \ \theta_{23}$ and its octant
- $\pmb{\times}~\delta_{\rm CP}$ and CP violation in leptonic sector
- X Absolute neutrino mass
- × Nature of neutrino mass: Dirac or Majorana

Past: Reactor $\overline{\nu}_e$ observation

Introduction $\overline{\nu}_e$ Observation Spectrum Oscillations Summary

Atomic bomb Herr Auge Savannah River

REINES AND COWAN: NEUTRINO DETECTION EXPERIMENT

Reines and Cowan: Neutrino detection experiment

Neutrino proposal

Neutrino proposal

 $^{3}T \longrightarrow ^{3}He + e^{-}$

Neutrino proposal

- ✗ Problem: tritium decay
- ✓ Proposed solution: $^{3}\mathrm{T} \longrightarrow ^{3}\mathrm{He} + e^{-} + \nu$
- Expect inverse reaction: $\overline{
 u}_e + p \longrightarrow e^+ + n$
- \checkmark Expected cross section: $10^{-44} \, \text{cm}^2$

First proposal by Reines and Cowan

• Detect ν at 50 m from 20 kt nuclear explosion.

 ${}^{3}\mathrm{T} \longrightarrow {}^{3}\mathrm{He} + e^{-}$

Neutrino proposal

- ✗ Problem: tritium decay
- ✓ Proposed solution: $^{3}\mathrm{T} \longrightarrow ^{3}\mathrm{He} + e^{-} + \nu$
- Expect inverse reaction: $\overline{
 u}_e + p \longrightarrow e^+ + n$
- **X** Expected cross section: 10^{-44} cm^2

- Detect ν at 50 m from 20 kt nuclear explosion.
- Drop detector into the shaft to avoid earthquake.

 ${}^{3}\mathrm{T} \longrightarrow {}^{3}\mathrm{He} + e^{-}$

Neutrino proposal

- ✗ Problem: tritium decay
- ✓ Proposed solution: $^{3}{
 m T} \longrightarrow {}^{3}{
 m He} + e^{-} + \nu$
- Expect inverse reaction: $\overline{\nu}_e + p \longrightarrow e^+ + n$ × Expected cross section: 10^{-44} cm^2

- Detect ν at 50 m from 20 kt nuclear explosion.
- Drop detector into the shaft to avoid earthquake.
- **X** Problem: γ background.

 ${}^{3}\mathrm{T} \longrightarrow {}^{3}\mathrm{He} + e^{-}$

Neutrino proposal

- ✗ Problem: tritium decay
- ✓ Proposed solution: $^{3}\mathrm{T} \longrightarrow ^{3}\mathrm{He} + e^{-} + \nu$
- Expect inverse reaction: $\overline{\nu}_e + p \longrightarrow e^+ + n$ × Expected cross section: 10^{-44} cm^2

- Detect ν at 50 m from 20 kt nuclear explosion.
- Drop detector into the shaft to avoid earthquake.
- **X** Problem: γ background.
- ✓ Solution: use neutron capture to tag ν event.

Reines and Cowan: NEUTRINO DETECTION EXPERIMENT

 $^{3}T \longrightarrow ^{3}He + e^{-}$

Neutrino proposal

- ✗ Problem: tritium decay
- ✓ Proposed solution: $^{3}\mathrm{T} \longrightarrow ^{3}\mathrm{He} + e^{-} + \nu$
- Expect inverse reaction: $\overline{\nu}_e + p \longrightarrow e^+ + n$ × Expected cross section: 10^{-44} cm^2

- Detect ν at 50 m from 20 kt nuclear explosion.
- Drop detector into the shaft to avoid earthquake.
- **X** Problem: γ background.
- \checkmark Solution: use neutron capture to tag ν event.
- \checkmark With double signal: no need to use explosion.

First attempt

1953

- Cylindrical detector: Ø71 cm, \$\$76 cm, 300 l
- Target: liquid scintillator (LS) + ¹¹³Cd
- 90 2" PMTs

First attempt

1953

- Cylindrical detector: Ø71 cm, ‡76 cm, 300 l
- Target: liquid scintillator (LS) + ${}^{113}Cd$
- 90 2" PMTs

Reactor $\overline{\nu}_e$

First attempt

- 1953
- Cylindrical detector: Ø71 cm, \$\$76 cm, 300 l
- Target: liquid scintillator (LS) + ${}^{113}Cd$
- 90 2" PMTs
- Expected count rate:
- Observed count rate:

0.3 min⁻¹ 5 min⁻¹

Reactor $\overline{\nu}_e$

First attempt

1953

 $0.3 \, \text{min}^{-1}$ $5 \, \text{min}^{-1}$

Reactor $\overline{\nu}_e$

- Cylindrical detector: Ø71 cm, \$76 cm, 300 l
- Target: liquid scintillator (LS) + 113 Cd
- 90 2" PMTs
- Expected count rate:
- Observed count rate:
- × Found cosmogenic background

Second attempt

- Sandwich detector: 3×1400 LS
- Target: $2 \times 200 \text{ I}, \text{ H}_2\text{O}/\text{D}_2\text{O} + {}^{113}\text{Cd}$
- Depth:
- 3 × 110 5" PMTs

1955

12 m

Second attempt

- Sandwich detector: 3×1400 LS
- Target: $2 \times 200 \text{ I}, \text{ H}_2\text{O}/\text{D}_2\text{O} + {}^{113}\text{Cd}$
- Depth:
- 3 × 110 5" PMTs
- Select coincidences

12 m

Second attempt

- Sandwich detector: 3×1400 LS
- Target: $2 \times 200 \text{ I}, \text{ H}_2\text{O}/\text{D}_2\text{O} + {}^{113}\text{Cd}$
- Depth:
- 3 × 110 5" PMTs
- Select coincidences

1955

12 m

Second attempt

- Sandwich detector: 3×1400 l
- Target: $2 \times 200 \text{ I}, \text{ H}_2\text{O}/\text{D}_2\text{O} + {}^{113}\text{Cd}$
- Depth:
- 3 × 110 5" PMTs
- Select coincidences

Results

- Observed rate: 3 h⁻¹
- S/N ratio:

1955

3 × 1400 | LS

12 m

3/1

Second attempt

- Sandwich detector: 3×1400 LS
- Target: $2 \times 200 \text{ I}, \text{ H}_2\text{O}/\text{D}_2\text{O} + {}^{113}\text{Cd}$
- Depth:
- 3 × 110 5" PMTs
- Select coincidences

Results

- Observed rate:
- S/N ratio:
- Signal depends on reactor power
- Signal does not depend on shielding

1955

12 m

 $3h^{-1}$

3/1
SAVANNAH RIVER EXPERIMENT: OBSERVATION

Second attempt

- Sandwich detector: 3×1400
- Target: $2 \times 200 \text{ I}, \text{ H}_2\text{O}/\text{D}_2\text{O} + {}^{113}\text{Cd}$
- Depth:
- 3 × 110 5" PMTs
- Select coincidences

Results

- Observed rate:
- S/N ratio:
- Signal depends on reactor power
- Signal does not depend on shielding
- Nobel Prise 1974 (Reines)

1955

 $3 \times 1400 | LS$

12 m

 $3h^{-1}$

3/1

Past: Reactor $\overline{\nu}_e$ spectrum

- Alternative names: ab initio
- Examples: Vogel et al. ([™]PRC24, '81), Mueller et al. [1101.2663], Estienne et al. [1904.09358]
- Variable: number of $\overline{\nu}_e$ per fission per MeV

The method

• Combine contributions from:

Fallot et al. [1208.3877]

The method

- Combine contributions from:
- 4 fission isotopes

Fallot et al. [1208.3877]

 \times

The method

- Combine contributions from:
- 4 fission isotopes
- Tens of fission states

Fallot et al. [1208.3877]

×

×

The method

- Combine contributions from:
- 4 fission isotopes
- Tens of fission states
- Hundreds of beta decay branches ×

 → thousands of components

Fallot et al. [1208.3877]

×

The method

- Combine contributions from:
- 4 fission isotopes
- Tens of fission states
- Hundreds of beta decay branches \times \hookrightarrow thousands of components
- Databases:

Fallot et al. [1208.3877]

×

X

ENDF/B, JEFF

The method

- Combine contributions from:
- 4 fission isotopes
- Tens of fission states
- Hundreds of beta decay branches \times \hookrightarrow thousands of components
- Databases:

Fallot et al. [1208.3877]

×

X

ENDF/B, JEFF

The method

- Combine contributions from:
- 4 fission isotopes
- Tens of fission states
- Hundreds of beta decay branches ×

 → thousands of components
- Databases:

ENDF/B, JEFF

Problems

× Missing data: branches, forbiddennes, ...

Fallot et al. [1208.3877]

×

The method

- Combine contributions from:
- 4 fission isotopes
- Tens of fission states
- Hundreds of beta decay branches ×

 → thousands of components
- Databases:

ENDF/B, JEFF

Problems

- × Missing data: branches, forbiddennes, ...
- 🗶 Biased data: pa

pandemonium effect

Fallot et al. [1208.3877]

×

The method

- Combine contributions from:
- 4 fission isotopes
- Tens of fission states
- Hundreds of beta decay branches ×

 → thousands of components
- Databases:

ENDF/B, JEFF

Problems

- × Missing data: branches, forbiddennes, ...
- × Biased data: pandemonium effect
- X Does not agree with experiment

Fallot et al. [1208.3877]

×

The method

- Combine contributions from:
- 4 fission isotopes
- Tens of fission states
- Hundreds of beta decay branches ×

 → thousands of components
- Databases:

ENDF/B, JEFF

Problems

- X Missing data: branches, forbiddennes, ...
- X Biased data: pandemonium effect
- X Does not agree with experiment
- $\pmb{\times}$ Overall: difficult to account systematics conservatively estimated in $\sim 10\,\%$

Fallot et al. [1208.3877]

×

CONVERSION METHOD

Notable publications:

• Variable: Shreckenbach et al ($\[\]^PLB160, 1985$) Hahn et al ($\[\]^PLB218, 1989$) Mueller et al [1101.2663] Haag et al [1312.5601] Haag et al [1405.3501]

The method

• Irradiate thin foil:

CONVERSION METHOD

The method

• Irradiate thin foil:

 $^{235}\mathrm{U}/^{239}\mathrm{Pu}/^{241}\mathrm{Pu}$ with slow neutrons $^{238}\mathrm{U}$ with fast neutrons

Measure beta spectrum of fission products

The method

• Irradiate thin foil:

- Measure beta spectrum of fission products
- Convert β spectrum to ν spectrum

The method

• Irradiate thin foil:

- Measure beta spectrum of fission products
- Convert β spectrum to ν spectrum
- Data: measurements in ILL by Schreckenbach et al. '80s

The method

• Irradiate thin foil:

- Measure beta spectrum of fission products
- Convert β spectrum to ν spectrum
- Data: measurements in ILL by Schreckenbach et al. '80s

The method

• Irradiate thin foil:

 $^{235}\mathrm{U}/^{239}\mathrm{Pu}/^{241}\mathrm{Pu}$ with slow neutrons $^{238}\mathrm{U}$ with fast neutrons

- Measure beta spectrum of fission products
- Convert β spectrum to ν spectrum
- Data: measurements in ILL by Schreckenbach et al. '80s

Conversion (example)

• Introduce 30 virtual decay branches

The method

• Irradiate thin foil:

 $^{235}\mathrm{U}/^{239}\mathrm{Pu}/^{241}\mathrm{Pu}$ with slow neutrons $^{238}\mathrm{U}$ with fast neutrons

- Measure beta spectrum of fission products
- Convert β spectrum to ν spectrum
- Data: measurements in ILL by Schreckenbach et al. '80s

Conversion (example)

- Introduce 30 virtual decay branches
- Fit parameters to match beta-decay data

The method

• Irradiate thin foil:

 $^{235}\mathrm{U}/^{239}\mathrm{Pu}/^{241}\mathrm{Pu}$ with slow neutrons $^{238}\mathrm{U}$ with fast neutrons

- Measure beta spectrum of fission products
- Convert β spectrum to ν spectrum
- Data: measurements in ILL by Schreckenbach et al. '80s

Conversion (example)

- Introduce 30 virtual decay branches
- Fit parameters to match beta-decay data

The method

• Irradiate thin foil:

 $^{235}\mathrm{U}/^{239}\mathrm{Pu}/^{241}\mathrm{Pu}$ with slow neutrons $^{238}\mathrm{U}$ with fast neutrons

- Measure beta spectrum of fission products
- Convert β spectrum to ν spectrum
- Data: measurements in ILL by Schreckenbach et al. '80s

Conversion (example)

- Introduce 30 virtual decay branches
- Fit parameters to match beta-decay data

Problems

X Does not agree with experiment

CONVERSION METHOD

The method

• Irradiate thin foil:

 $^{235}\mathrm{U}/^{239}\mathrm{Pu}/^{241}\mathrm{Pu}$ with slow neutrons $^{238}\mathrm{U}$ with fast neutrons

- Measure beta spectrum of fission products
- Convert β spectrum to ν spectrum
- Data: measurements in ILL by Schreckenbach et al. '80s

Conversion (example)

- Introduce 30 virtual decay branches
- Fit parameters to match beta-decay data

Problems

- X Does not agree with experiment
- \checkmark Systematics: conservatively estimated in \sim 10 %

• In 2011 Patrick Huber and Mueller et al. independently recalculated ILL spectra (conversion).

- In 2011 Patrick Huber and Mueller et al. independently recalculated ILL spectra (conversion).
- The predicted spectrum increased by 3%.

Maxim Gonchar (DLNP, JINR)

- In 2011 Patrick Huber and Mueller et al. independently recalculated ILL spectra (conversion).
- The predicted spectrum increased by 3%.
- Previously consistent experiments became inconsistent:

 \hookrightarrow observed deficit $\sim 5\%$ \hookrightarrow reactor anomaly

- In 2011 Patrick Huber and Mueller et al. independently recalculated ILL spectra (conversion).
- The predicted spectrum increased by 3%.
- Previously consistent experiments became inconsistent: \hookrightarrow observed deficit \sim 5 %

 \hookrightarrow reactor anomaly

• Combination $^{235}U/^{239}Pu/^{241}Pu$ by Huber and ^{238}U by Mueller et al. often used as reference.

Double Chooz IV

Near (258 live-days) 4 5 Visible Energy (MeV)

Current status

Experiments are consistent in observation:

- Overall deficit of $\sim 5 \%$
- Bump/excess at 4 MeV 6 MeV

Double Chooz IV

Near (258 live-days) 4 5 Visible Energy (MeV)

Current status

Experiments are consistent in observation:

- Overall deficit of $\sim 5 \%$
- Bump/excess at 4 MeV 6 MeV

- ${}^{86}\text{Ge}$ fission yields (NDSF/B)
- Incorrect 238 U contribution
- Incorrect $^{235}\mathrm{U}$ contribution

Current status

Experiments are consistent in observation:

- Overall deficit of $\sim 5 \%$
- Bump/excess at 4 MeV 6 MeV

- ${}^{86}Ge$ fission yields (NDSF/B)
- Incorrect 238 U contribution
- Incorrect $^{235}\mathrm{U}$ contribution
- Incorrect conversion

1.4

1.3

Gösgen [1807.01810]

Gösgen + RENO (near)

Current status

Experiments are consistent in observation:

- Overall deficit of $\sim 5\%$
- Bump/excess at 4 MeV 6 MeV

- ⁸⁶Ge fission vields (NDSF/B)
- Incorrect ²³⁸U contribution
- Incorrect ²³⁵U contribution
- Incorrect conversion
- Impact of neutron spectrum

Double Chooz IV

Near (258 live-days) 4 5 Visible Energy (MeV)

Current status

Experiments are consistent in observation:

- Overall deficit of $\sim 5 \%$
- Bump/excess at 4 MeV 6 MeV

- ${}^{86}\mathrm{Ge}$ fission yields (NDSF/B)
- Incorrect 238 U contribution
- Incorrect $^{235}\mathrm{U}$ contribution
- Incorrect conversion
- Impact of neutron spectrum
- Sterile neutrino (rate, not bump)
- Others?

Current status

Experiments are consistent in observation:

- Overall deficit of $\sim 5 \%$
- Bump/excess at 4 MeV 6 MeV

Possible reasons

- ${}^{86}\mathrm{Ge}$ fission yields (NDSF/B)
- Incorrect 238 U contribution
- Incorrect $^{235}\mathrm{U}$ contribution
- Incorrect conversion
- Impact of neutron spectrum
- Sterile neutrino (rate, not bump)
- Others?

no clear resolution yet ...

Maxim Gonchar (DLNP, JINR)

Double Chooz IV

Near (258 live-days) 4 5 Visible Energy (MeV)

Reactor $\overline{\nu}_e$ spectrum

Summary

- Reactor antineutrino is complex
- No satisfactory spectrum model is present
- Reasons for discrepancies are not understood
- Should be properly treated in reactor neutrino experiments
- A lot of work to be done...

Neutrino oscillations
Mixing Reactor $\overline{\nu} \quad \Delta m_{21}^2 \quad \sin^2 2\theta_{13} \quad \overline{\nu}_s \quad \text{NMO}$

MANDATORY SLIDE I: NEUTRINO MIXING

Weak and mass eigenstates differ: $|\nu_{\alpha}\rangle = \sum U_{\alpha i}^{*}|\nu_{i}\rangle$ $\alpha - \text{flavor states}$ i - mass statesMixing parametrized by: • three mixing angles: $\theta_{12}, \theta_{23}, \theta_{13},$ • CP-violating phase: δ_{CP} .

Mixing Reactor $\overline{\nu} \ \Delta m_{21}^2 \ \sin^2 2\theta_{13} \ \overline{\nu}_s$ NMO

MANDATORY SLIDE I: NEUTRINO MIXING

Weak and mass eigenstates differ: $|\nu_{\alpha}\rangle = \sum U_{\alpha i}^{*}|\nu_{i}\rangle$ $\alpha - \text{flavor states}$ i - mass statesMixing parametrized by: • three mixing angles: $\theta_{12}, \theta_{23}, \theta_{13},$ • CP-violating phase: $\delta_{\text{CP}}.$

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix:

 \checkmark $\theta_{23} \approx 45^{\circ}$ established through atmospheric and accelerator experiments:possibly maximal. \checkmark $\theta_{12} \approx 34^{\circ}$ established through solar experiments and KamLAND:large, but not maximal. \checkmark $\theta_{13} \approx 8^{\circ}$ established by reactor:Daya Bay, RENO, Double Chooz, T2K and MINOS.• δ_{CP} unknown:NOvA and T2K.

Mixing Reactor $\overline{\nu} \ \Delta m_{21}^2 \ \sin^2 2\theta_{13} \ \overline{\nu}_s$ NMO

MANDATORY SLIDE II: NEUTRINO MASS AND ORDERING

Neutrino mass

• Mass limits, meV:

	oscillations	$m_2, m_3 > 0$
		$\sum m_{ u} \gtrsim 60$
$Planck^{\bowtie}$	cosmology	$\sum m_ u \lesssim ~$ 120
KATRIN ^ℤ	direct	$m_{ u_e}{<}1100$
GERDA	0 uetaeta	$\langle m_{etaeta} angle <~160$
GENDA		$m_{\rm light} < 440$

Normal ordering

 $\nu_e \square \quad \nu_\mu \square$

Maxim Gonchar (DLNP, JINR)

Mixing Reactor $\overline{\nu} \ \Delta m_{21}^2 \ \sin^2 2\theta_{13} \ \overline{\nu}_s$ NMO

MANDATORY SLIDE II: NEUTRINO MASS AND ORDERING

Normal ordering

 $\nu_e \square \quad \nu_\mu \square \quad \nu_\tau \square$

Neutrino massMass limits, meV:

$m_2, m_3 > 0$ $\sum m_{\nu} \gtrsim 60$	oscillations	
$\sum m_{ u} \lesssim 120$	cosmology	Planck ^ℤ
$m_{ u_e}{<}1100$	direct	KATRIN ^ℤ
$\langle m_{etaeta} angle<~160$	0 uetaeta	GERDA [☞]
$m_{\rm light} < 440$		

Mass splitting from oscillations

•
$$\Delta m^2_{21} = (7.53 \pm 0.18) imes 10^{-5} \, {
m eV}^2$$

•
$$\left|\Delta m^2_{32}\right| = (2.42 \pm 0.06) imes 10^{-3} \, {
m eV^2}$$

• $\left| \Delta m_{32}^2 \right| / \Delta m_{21}^2 \sim 32$

Mixing Reactor $\overline{\nu} \quad \Delta m_{21}^2 \quad \sin^2 2\theta_{13} \quad \overline{\nu}_s \quad \text{NMO}$

MANDATORY SLIDE II: NEUTRINO MASS AND ORDERING

Neutrino mass

• Mass limits, meV:

$m_2, m_3 > 0$ $\sum m_ u \gtrsim 60$	oscillations	
$\sum m_ u \lesssim ~$ 120	cosmology	Planck [™]
$m_{ u_e}{<}1100$	direct	KATRIN ^ℤ
$\langle m_{etaeta} angle <~160$	0 uetaeta	GERDA ^ℤ
$m_{\text{light}} < 440$	- 1- 1-	

Mass splitting from oscillations

- $\Delta m^2_{21} = (7.53 \pm 0.18) \times 10^{-5} \, \mathrm{eV}^2$
- $\left|\Delta m^2_{32}\right| = (2.42 \pm 0.06) \times 10^{-3} \, {\rm eV^2}$
- $\left|\Delta m^2_{32}\right|/\Delta m^2_{21}\sim 32$
- Mass ordering: is ν_1 lighter than ν_3 ?

Mixing Reactor $\overline{\nu} \quad \Delta m_{21}^2 \quad \sin^2 2\theta_{13} \quad \overline{\nu}_s \quad \text{NMO}$

NEUTRINO OSCILLATION GLOBAL PICTURE

Mixing Reactor $\overline{\nu} \quad \Delta m_{21}^2 \quad \sin^2 2\theta_{13} \quad \overline{\nu}_s \quad \text{NMO}$

NEUTRINO OSCILLATION GLOBAL PICTURE

Reactor baselines

- SBL small < 100 m
- MBL medium

• LBL — large
$$\gtrsim 50$$
 km

 $\sim 1\,\text{km}$

Mixing Reactor $\overline{\nu} \ \Delta m_{21}^2 \ \sin^2 2\theta_{13} \ \overline{\nu}_s$ NMO

NEUTRINO OSCILLATION GLOBAL PICTURE

Reactor baselines

- SBL small < 100 m
- MBL medium $\sim 1 \, \text{km}$
- LBL large $\gtrsim 50 \text{ km}$

Oscillation parameters sensitivity

$$E_{
m vis} pprox E_{
u} - 0.78\,
m MeV$$

$$1 - P_{\nu_e \to \nu_e} = \sin^2 2\theta_{13} \left(\sin^2 \theta_{12} \sin^2 \frac{\Delta m_{32}^2 L}{4E} + \cos^2 \theta_{12} \sin^2 \frac{\Delta m_{31}^2 L}{4E} \right) + \sin^2 2\theta_{12} \cos^4 \theta_{13} \sin^2 \frac{\Delta m_{21}^2 L}{4E}$$

 $\delta_{\rm CP}, \theta_{23}$

Maxim Gonchar (DLNP, JINR)

October 24, 2020 28d / 54

 $E_{
m vis} pprox E_{
u} - 0.78 \, {
m MeV}$

 $E_{
m vis} pprox E_{
u} - 0.78\,{
m MeV}$

PAST: Δm_{21}^2 and θ_{12}

Goals

• 2002 – 2011: Δm_{21}^2 and θ_{12}

Goals

- 2002 2011: Δm_{21}^2 and θ_{12}
- X 2012: Fukusima disaster

 $\hookrightarrow \mathsf{NPP}$ shutdown

Goals

- 2002 2011: Δm_{21}^2 and θ_{12}
- 2013–: geo- ν and $0\nu\beta\beta$ decay

Goals

KAMLAND RESULTS

Maxim Gonchar (DLNP, JINR)

KAMLAND RESULTS

Maxim Gonchar (DLNP, JINR)

Mixing Reactor $\overline{\nu} \Delta m_{21}^2 \sin^2 2\theta_{13} \overline{\nu}_s$ NMO

KAMLAND RESULTS

KAMLAND RESULTS

 $\Delta\chi^2$

86

KAMLAND RESULTS

PRESENT: θ_{13} and Δm_{32}^2

Unreliable spectrum model

total flux, spectrum shape

 $E_{
m vis} pprox E_{
u} - 0.78\,
m MeV$

 P_{sur}

Mixing Reactor $\overline{\nu} \ \Delta m_{21}^2 \ \sin^2 2\theta_{13} \ \overline{\nu}_s$ NMO

Medium baseline reactor experiments: $2011 \sim 2020$

Double CHOOZ, France

Mixing Reactor $\overline{\nu} \ \Delta m_{21}^2 \ \sin^2 2\theta_{13} \ \overline{\nu}_s$ NMO

Medium baseline reactor experiments: $2011 \sim 2020$

Double CHOOZ, France

Mixing Reactor $\overline{\nu} \ \Delta m_{21}^2 \ \sin^2 2\theta_{13} \ \overline{\nu}_s$ NMO

Medium baseline reactor experiments: $2011 \sim 2020$

Double CHOOZ, France

Mixing Reactor $\overline{\nu} \ \Delta m_{21}^2 \ \sin^2 2\theta_{13} \ \overline{\nu}_s$ NMO

Medium baseline reactor experiments: $2011 \sim 2020$

Double CHOOZ, France

Maxim Gonchar (DLNP, JINR)

Reno, South Korea

Reactor $\overline{\nu}_e$

Mixing Reactor $\overline{\nu} \ \Delta m_{21}^2 \ \sin^2 2\theta_{13} \ \overline{\nu}_s$ NMO

Medium baseline reactor experiments: $2011 \rightsquigarrow 2020$

Double CHOOZ, France

Maxim Gonchar (DLNP, JINR)

Reno, South Korea

Daya Bay, China

Reactor $\overline{\nu}_e$

Mixing Reactor $\overline{\nu} \ \Delta m_{21}^2 \ \sin^2 2\theta_{13} \ \overline{\nu}_s$ NMO

Medium baseline reactor experiments: $2011 \sim 2020$

Double CHOOZ, France

Maxim Gonchar (DLNP, JINR)

Reno, South Korea

Daya Bay, China

Reactor $\overline{\nu}_e$
Mixing Reactor $\overline{\nu} \ \Delta m_{21}^2 \ \sin^2 2\theta_{13} \ \overline{\nu}_s$ NMO

ANTINEUTRINO DETECTORS (AD)

	D	aya Bay
Attention	Uncorr	ε unc.
Method	Identi	cal ADs 3 zones
Scintillator	G	dLS/LS
PMTs		192 8"
Coverage, %	/ N A N /	12
Light col. p.e. $\sigma_{-} \rightarrow 1 M_{O}/$	e. / MeV %	160
OE at 1 Wev	, /0	0.7
Detectors		4/4 far near
Thermal pow	er, GW	17.4
Baseline	0.5 kr	n–2 km
IBD/day/AD	75/	/635 far near

DAYA BAY DETECTORS

Mixing Reactor $\overline{\nu} \ \Delta m_{21}^2 \ \sin^2 2\theta_{13} \ \overline{\nu}_s$ NMO

DAYA BAY OSCILLATION RESULT: 500K/4M EVENTS

Mixing Reactor $\overline{\nu} \ \Delta m_{21}^2 \ \sin^2 2\theta_{13} \ \overline{\nu}_s$ NMO

Daya Bay oscillation result: 500K/4M events

Maxim Gonchar (DLNP, JINR)

PRL

arXiv:1809.02261

1958 days,

Mixing Reactor $\overline{\nu} \ \Delta m_{21}^2 \ \sin^2 2\theta_{13} \ \overline{\nu}_s$ NMO

DAYA BAY OSCILLATION RESULT

nH, 621 days, arXiv:1603.03549, PRD nGd, 1958 days, arXiv:1809.02261, PRL

• Most precise $\sin^2 2\theta_{13}$ measurement.

Maxim Gonchar (DLNP, JINR)

- $\sin^2 2\theta_{13} = 0$ is excluded at almost 30σ .
- nH sin² $2\theta_{13}$ measurement is world's third

in precision.

Mixing Reactor $\overline{\nu} \ \Delta m_{21}^2 \ \sin^2 2\theta_{13} \ \overline{\nu}_s$ NMO

DAYA BAY OSCILLATION RESULT

nH, 621 days, arXiv:1603.03549, PRD nGd, 1958 days, arXiv:1809.02261, PRL

- Most precise $\sin^2 2\theta_{13}$ measurement.
- $\sin^2 2\theta_{13} = 0$ is excluded at almost 30σ .
- nH $\sin^2 2\theta_{13}$ measurement is world's third

in precision.

- First world's measurement of Δm_{32}^2 .
- Δm^2_{32} is consistent with and complementary to accelerator measurements.
- Negligible correlation between

 $\sin^2 2\theta_{13}$ and Δm_{ee}^2 .

Present: $\overline{\nu}_s$

Why sterile neutrino?

General problem

- Are there any other neutrino flavors?
- Why do not we see them?

Mixing Reactor $\overline{\nu} \ \Delta m_{21}^2 \ \sin^2 2\theta_{13} \ \overline{\nu}_s$ NMO

Why sterile neutrino?

General problem

- Are there any other neutrino flavors?
- Why do not we see them?

Particular problems

- Events deficit observed
- Spectrum distortion observed

What if 3v mixing is not a complete picture?

Mixing Reactor $\overline{\nu} \Delta m_{21}^2 \sin^2 2\theta_{13} \overline{\nu}_s$ NMO

Why sterile neutrino?

General problem

- Are there any other neutrino flavors?
- Why do not we see them?

Particular problems

- Events deficit observed
- Spectrum distortion observed

Possible solution

- Introduce new neutrino flavor u_s
- Make it "undetectable"
- Oscillations to ν_s introduce rate deficit and spectrum distortion
- OR fix spectrum/cross-section/etc calculation

Mixing Reactor $\overline{\nu} \Delta m_{21}^2 \sin^2 2\theta_{13} \overline{\nu}_s$ NMO

Why sterile neutrino?

General problem

- Are there any other neutrino flavors?
- Why do not we see them?

Particular problems

- Events deficit observed
- Spectrum distortion observed

Possible solution

- Introduce new neutrino flavor ν_s
- Make it "undetectable"
- Oscillations to $\nu_{\rm s}$ introduce rate deficit and spectrum distortion
- OR fix spectrum/cross-section/etc calculation

- Reactor neutrino anomaly
- Accelerator neutrino anomaly
- Gallium neutrino anomaly

Mixing Reactor $\overline{\nu} \Delta m_{21}^2 \sin^2 2\theta_{13} \overline{\nu}_s$ NMO

 ν_{s_1}

Why sterile neutrino?

General problem

- Are there any other neutrino flavors?
- Why do not we see them?

Particular problems

- Events deficit observed
- Spectrum distortion observed

Possible solution

- Introduce new neutrino flavor ν_s
- Make it "undetectable"
- Oscillations to ν_{s} introduce rate deficit and spectrum distortion
- OR fix spectrum/cross-section/etc calculation

- Reactor neutrino anomaly
- Accelerator neutrino anomaly
- Gallium neutrino anomaly

Mixing Reactor $\overline{\nu} \Delta m_{21}^2 \sin^2 2\theta_{13} \overline{\nu}_s$ NMO

SHORT BASELINE NEUTRINO OSCILLATIONS

- Rate deficit at MBL may be explained as
- Oscillations to ν_s with $\Delta m^2_{41} > 1.5 \, {\rm eV}^2$

SHORT BASELINE NEUTRINO OSCILLATIONS

- Rate deficit at MBL may be explained as
- Oscillations to ν_s with $\Delta m^2_{41} > 1.5 \, {\rm eV}^2$
- May be observed as oscillations vs L/E for $L\sim 10~{
 m m}$

SHORT BASELINE NEUTRINO OSCILLATIONS

- Rate deficit at MBL may be explained as
- Oscillations to ν_s with $\Delta m^2_{41} > 1.5 \, {
 m eV}^2$
- May be observed as oscillations vs L/E for $L\sim 10~{
 m m}$

SHORT BASELINE NEUTRINO OSCILLATIONS

- Rate deficit at MBL may be explained as
- Oscillations to ν_s with $\Delta m^2_{41} > 1.5 \, {
 m eV}^2$
- May be observed as oscillations vs L/E for $L \sim 10$ m

SHORT BASELINE NEUTRINO OSCILLATIONS

- Rate deficit at MBL may be explained as
- Oscillations to ν_s with $\Delta m^2_{41} > 1.5\,{
 m eV}^2$
- May be observed as oscillations vs L/E for $L \sim 10$ m
- X Inconsistent with cosmology

Research						
$W_{\rm th} <$	100	MW				
$L \lesssim 10$	m					

Nucifer 7 m

Industrial $W_{
m th} \sim 3 \,
m GW$

- Status: R&D, running, stopping soon, stopped
- Labels: Liquid scintillator, LS; Plastic scintillator, PS
- Reactor monitoring experiments not included: Angra, Chandler, Panda, Watchman

Detector Reactor	Segmented movable $L \lesssim 10 \mathrm{m}$	Segmented	Whole	GdLS	Multiple detectors Multiple reactors GdLS, $L > 100 \mathrm{m}$
$\begin{array}{l} \text{Research} \\ \mathcal{W}_{\rm th} < 100 \ \text{MW} \\ \mathcal{L} \lesssim 10 \ \text{m} \end{array}$			Nucifer	7 m	
Industrial $W_{ m th}\sim$ 3 GW			NEOS <mark>TAO</mark>	25 m 30 m	

- Status: R&D, running, stopping soon, stopped
- Labels: Liquid scintillator, LS; Plastic scintillator, PS
- Reactor monitoring experiments not included: Angra, Chandler, Panda, Watchman

Detector Reactor	Segmented movable $L \lesssim 10 \mathrm{m}$	Segmented	Whole GdLS	Multiple detectors Multiple reactors GdLS, $L > 100 \mathrm{m}$
$\begin{array}{l} \text{Research} \\ \mathcal{W}_{\rm th} < 100 \text{ MW} \\ \mathcal{L} \lesssim 10 \text{ m} \end{array}$		StereoGdLSProspectLiLSSolidLiPSNuLatLiPS	Nucifer 7 m	
Industrial $W_{ m th}\sim$ 3 GW			NEOS 25 m TAO 30 m	

- Status: R&D, running, stopping soon, stopped
- Labels: Liquid scintillator, LS; Plastic scintillator, PS
- Reactor monitoring experiments not included: Angra, Chandler, Panda, Watchman

Detector Reactor	Segmented movable L <	$\lesssim 10$ m	Segmente	d	Whole	GdLS	Multiple detectors Multiple reactors GdLS, $L > 100 \mathrm{m}$
Research $W_{ m th} < 100 m MW$ $L \lesssim 10 m m$	Neutrino-4 Neutrino-5	GdLS GdLS	Stereo Prospect Solid NuLat	GdLS LiLS LiPS LiPS	Nucifer	7 m	
Industrial $W_{ m th}\sim$ 3 GW					NEOS <mark>TAO</mark>	25 m 30 m	

- Status: R&D, running, stopping soon, stopped
- Labels: Liquid scintillator, LS; Plastic scintillator, PS
- Reactor monitoring experiments not included: Angra, Chandler, Panda, Watchman

Detector Reactor	Segmented movable $L \lesssim 10 { m m}$	Segmented	Whole _{GdLS}	Multiple detectors Multiple reactors GdLS, $L > 100 \mathrm{m}$
$\begin{array}{l} \text{Research} \\ W_{\rm th} < 100 \text{ MW} \\ L \lesssim 10 \text{ m} \end{array}$	Neutrino-4 GdLS Neutrino-5 GdLS	Stereo GdLS Prospect LiLS Solid LiPS NuLat LiPS	Nucifer 7 m	
Industrial $W_{ m th}\sim$ 3 GW	DANSS GdPS MONUMENT		NEOS 25 m TAO 30 m	

- Status: R&D, running, stopping soon, stopped
- Labels: Liquid scintillator, LS; Plastic scintillator, PS
- Reactor monitoring experiments not included: Angra, Chandler, Panda, Watchman

Detector Reactor	Segmented movable L	$\lesssim 10{ m m}$	Segmented	Whole	GdLS	Multiple detectors Multiple reactors GdLS, $L > 100 \mathrm{m}$
Research $W_{\rm th} < 100 {\rm MW}$ $L \lesssim 10 {\rm m}$	Neutrino-4 Neutrino-5	GdLS GdLS	Stereo GdLS Prospect LiLS Solid LiPS NuLat LiPS	Nucifer	7 m	
Industrial $W_{ m th}\sim 3 m GW$	DANSS MONUMEN	GdPS T		NEOS <mark>TAO</mark>	25 m 30 m	Daya Bay RENO Double CHOOZ

- Status: R&D, running, stopping soon, stopped
- Labels: Liquid scintillator, LS; Plastic scintillator, PS
- Reactor monitoring experiments not included: Angra, Chandler, Panda, Watchman

Mixing Reactor $\overline{\nu} \ \Delta m_{21}^2 \ \sin^2 2\theta_{13} \ \overline{\nu}_s$ NMO

SBL STERILE NEUTRINO EXPERIMENTS

DANSS (Kalinin, 16-)

Mixing Reactor $\overline{\nu} \ \Delta m_{21}^2 \ \sin^2 2\theta_{13} \ \overline{\nu}_s$ NMO

SBL STERILE NEUTRINO EXPERIMENTS

DANSS (Kalinin, 16-)

Neutrino 4 (Dimitrovgrad, 13 - 18)

Mixing Reactor $\overline{\nu} \ \Delta m_{21}^2 \ \sin^2 2\theta_{13} \ \overline{\nu}_s$ NMO

SBL STERILE NEUTRINO EXPERIMENTS

DANSS (Kalinin, 16-)

Prospect (US,16-)

Neutrino 4 (Dimitrovgrad, 13 - 18)

Mixing Reactor $\overline{\nu} \ \Delta m_{21}^2 \ \sin^2 2\theta_{13} \ \overline{\nu}_s$ NMO

SBL STERILE NEUTRINO EXPERIMENTS

DANSS (Kalinin, 16-)

Prospect (US,16-) Solid (Belgium, 17-)

Neutrino 4 (Dimitrovgrad, 13 - 18)

Mixing Reactor $\overline{\nu} \ \Delta m_{21}^2 \ \sin^2 2\theta_{13} \ \overline{\nu}_s$ NMO

SBL STERILE NEUTRINO EXPERIMENTS

DANSS (Kalinin, 16-)

Prospect (US,16-) Solid (Belgium, 17-)

Neutrino 4 (Dimitrovgrad, 13 - 18)

NEOS (Korea, 15-17)

Mixing Reactor $\overline{\nu} \ \Delta m_{21}^2 \ \sin^2 2\theta_{13} \ \overline{\nu}_s$ NMO

SBL STERILE NEUTRINO EXPERIMENTS

DANSS (Kalinin, 16–)

Prospect (US,16-) Solid (Belgium, 17-)

Neutrino 4 (Dimitrovgrad, 13 - 18)

NEOS (Korea, 15-17)

Stereo (France, 15 - 17)

Mixing Reactor $\overline{\nu} \ \Delta m_{21}^2 \ \sin^2 2\theta_{13} \ \overline{\nu}_s$ NMO

STERILE NEUTRINO SBL RESULTS 2020

- Recently Neutrino-4 claims sterile neutrino observation
- $\Delta m_{41}^2 = (7.25 \pm 1.09) \,\mathrm{eV}^2$ and $\sin^2 2\theta_{14} = 0.26 \pm 09$.

Mixing Reactor $\overline{\nu} \ \Delta m_{21}^2 \ \sin^2 2\theta_{13} \ \overline{\nu}_s$ NMO

STERILE NEUTRINO SBL RESULTS 2020

- Recently Neutrino-4 claims sterile neutrino observation
- $\Delta m_{41}^2 = (7.25 \pm 1.09) \,\mathrm{eV}^2$ and $\sin^2 2\theta_{14} = 0.26 \pm 09$.

Mixing Reactor $\overline{\nu} \ \Delta m_{21}^2 \ \sin^2 2\theta_{13} \ \overline{\nu}_s$ NMO

STERILE NEUTRINO SBL RESULTS 2020

- Recently Neutrino-4 claims sterile neutrino observation
- $\Delta m_{41}^2 = (7.25 \pm 1.09) \,\mathrm{eV}^2$ and $\sin^2 2\theta_{14} = 0.26 \pm 09$.
- Partially consistent with reactor anomaly.

Neutrino-4

- Recently Neutrino-4 claims sterile neutrino observation
- $\Delta m_{41}^2 = (7.25 \pm 1.09) \,\mathrm{eV^2}$ and $\sin^2 2\theta_{14} = 0.26 \pm 09$.
- Partially consistent with reactor anomaly.

Neutrino-4

Stereo

• Energetic discussion: [2005.05301] started.

Maxim Gonchar (DLNP, JINR)

October 24, 2020 44d / 54

- Recently Neutrino-4 claims sterile neutrino observation
- $\Delta m_{41}^2 = (7.25 \pm 1.09) \,\mathrm{eV}^2$ and $\sin^2 2\theta_{14} = 0.26 \pm 09$.
- Partially consistent with reactor anomaly.

Neutrino-4

Stereo

- Energetic discussion: [2005.05301] started.
- Stereo partially excludes Neutrino-4 claim.

Prospect

• Prospect not sensitive to Neutrino-4 claim.

Maxim Gonchar (DLNP, JINR)

- Recently Neutrino-4 claims sterile neutrino observation
- $\Delta m_{41}^2 = (7.25 \pm 1.09) \,\mathrm{eV}^2$ and $\sin^2 2\theta_{14} = 0.26 \pm 09$.
- Partially consistent with reactor anomaly.

Neutrino-4

Stereo

• Energetic discussion: [2005.05301] started.

• Stereo partially excludes Neutrino-4 claim.

Prospect

• Prospect not sensitive to Neutrino-4 claim.

Maxim Gonchar (DLNP, JINR)

- Recently Neutrino-4 claims sterile neutrino observation
- $\Delta m_{41}^2 = (7.25 \pm 1.09) \,\mathrm{eV}^2$ and $\sin^2 2\theta_{14} = 0.26 \pm 09$.
- Partially consistent with reactor anomaly.

Neutrino-4

Future Stereo

Prospect

- Energetic discussion: [2005.05301] started.
- Expect to cover Neutrino-4 on a full dataset.
- Prospect not sensitive to Neutrino-4 claim.

Maxim Gonchar (DLNP, JINR)

Reactor $\overline{\nu}_e$
FUTURE: NEUTRINO MASS ORDERING

and Δm_{32}^2 , Δm_{21}^2 , θ_{12} , and reactor $\overline{\nu}_e$ spectrum

and $\overline{\nu}_s$

Challenges:

- Unreliable spectrum model
- Efficiency uncertainty
- Energy scale uncertainty
- Energy resolution σ_E

Daya Bay

total flux, spectrum shape $\lesssim 0.2\%$ uncorrelated

JUNO

fine structure?

(same Δm_{ee}^2)

```
<\!\!1\%
<\!\!3\% at 1 MeV
E_{
m vis} \approx E_{\!\nu} - 0.78\,{
m MeV}
```


Challenges:

- Unreliable spectrum model
- Efficiency uncertainty
- Energy scale uncertainty
- Energy resolution σ_E

Daya Bay

total flux, spectrum shape $\lesssim 0.2\%$ uncorrelated

JUNO

fine structure?

(same Δm_{ee}^2)

```
<\!\!1\%
<\!\!3\% at 1 MeV
E_{
m vis} \approx E_{\!\nu} - 0.78\,{
m MeV}
```

Mixing Reactor $\overline{\nu} \ \Delta m_{21}^2 \ \sin^2 2\theta_{13} \ \overline{\nu}_s$ NMO

DAYA BAY, JUNO AND TAO LOCATION

• JUNO — Jiangmen Underground Neutrino Observatory

	Yangjian	Taishan
Thermal power, GW	2.9×6	4.6×42
Total, GW	35.8	26.6

• TAO — Taishan Antineutrino Observatory

Mixing Reactor $\overline{\nu} \ \Delta m_{21}^2 \ \sin^2 2\theta_{13} \ \overline{\nu}_s$ NMO

DAYA BAY, JUNO AND TAO LOCATION

• JUNO — Jiangmen Underground Neutrino Observatory

• TAO — Taishan Antineutrino Observatory

	Yangjian	Taishan	Daya Bay	Ling Ao	Ling Ao II
Thermal power, GW	2.9×6	4.6×42	2.9×2	2.9×2	2.9×2
Total, GW	35.8	26.6		17.4	

Mixing Reactor $\overline{\nu} \ \Delta m_{21}^2 \ \sin^2 2\theta_{13} \ \overline{\nu}_s$ NMO

DAYA BAY, JUNO AND TAO LOCATION

• JUNO — Jiangmen Underground Neutrino Observatory

• TAO — Taishan Antineutrino Observatory

	Yangjian	Taishan	Daya Bay	Ling Ao	Ling Ao II	Huizhou	
Thermal power, GW	2.9×6	4.6×42	2.9×2	2.9×2	2.9×2	2.9×6	
Total, GW	35.8	26.6		17.4		17.4 ?	

Mixing Reactor $\overline{\nu} \ \Delta m_{21}^2 \ \sin^2 2\theta_{13} \ \overline{\nu}_s$ NMO

ANTINEUTRINO DETECTORS (AD)

	Daya Bay	
Attention	Uncorr. ε unc.	
Method	Identical ADs 3 zones	
Scintillator	GdLS/LS	
PMTs	192 8"	
Coverage, % Light col. p.e σ_E at 1 MeV,	12 ./MeV 160 % 8.7	
Detectors	4/4 far near	
Thermal pow	er, GW 17.4	
Baseline	0.5 km–2 km	
IBD/day/AD	75/635 far near	

Mixing Reactor $\overline{\nu} \ \Delta m_{21}^2 \ \sin^2 2\theta_{13} \ \overline{\nu}_s$ NMO

ANTINEUTRINO DETECTORS (AD)

	Daya Bay	JUNO
Attention	Uncorr. ε unc.	Energy resolution
Method	Identical ADs 3 zones	Light collection
Scintillator	GdLS/LS	LS
PMTs	192 8"	18k 20" +26k 3"
Coverage, %	12	78
Light col. p.e	e./MeV 160	1200 1350
σ_E at 1 MeV	, % 8.7	3
Detectors	$4/4 {far}_{near}$	1
Thermal pow	er, GW 17.4	35.8 26.6
Baseline	0.5 km-2 km	52 km
IBD/day/AD	$75/635$ $_{ m near}^{ m far}$	60 45

Mixing Reactor $\overline{\nu} \ \Delta m_{21}^2 \ \sin^2 2\theta_{13} \ \overline{\nu}_s$ NMO

ANTINEUTRINO DETECTORS (AD)

	Daya Bay	TAO	JUNO		
Attention	Uncorr. ε unc.	Energy r	Energy resolution		
Method	Identical ADs 3 zones	Dark noise	Dilection		
Scintillator	GdLS/LS	GdLS	LS		
ΡΜΤε	102.8"	SiPM	18k 20"		
FIVITS	192 0	1.5M 5 mm	+26k 3"		
Coverage, %	12	94	78		
Light col. p.	e./MeV 160	4500	1200 1350		
σ_E at 1 MeV	% 8.7	2	3		
Detectors	$4/4 \stackrel{far}{_{near}}$	1	1		
Thermal pov	ver, GW 17.4	4.6	35.8 26.6		
Baseline	0.5 km-2 km	30 m	52 km		
IBD/day/AD	75/635 far near	2000	60 45		

CIVIL CONSTRUCTION

- Neutrino mass ordering (NMO)
 - 3σ NMO sensitivity within 6 8 years.
 - 4σ with Δm_{32}^2 input from accelerator experiments.
 - $\blacktriangleright~>5\sigma$ combined analysis with IceCube within 3–7 years

or PINGU in 2 years.

• Combination with accelerator experiments — promising.

- Neutrino mass ordering (NMO)
 - 3σ NMO sensitivity within \oplus 8 years.
 - 4σ with Δm_{32}^2 input from accelerator experiments.
 - ► > 5σ combined analysis with IceCube within 3–7 years or PINGU in 2 years.
 - Combination with accelerator experiments promising.

Physics with TAO

- Precision reactor $\overline{\nu}_e$ spectra:
 - Total spectrum.
 - \blacktriangleright ²³⁵U/²³⁹Pu spectra.
- Search for sterile neutrino.

- Neutrino mass ordering (NMO)
 - 3σ NMO sensitivity within \oplus 8 years.
 - 4σ with Δm_{32}^2 input from accelerator experiments.
 - ► > 5σ combined analysis with IceCube within 3–7 years or PINGU in 2 years.
 - Combination with accelerator experiments promising.
- Neutrino oscillation parameters measurement
 - $\blacktriangleright~\sim 20$ oscillation cycles in a single experiment.
 - Expected precision for $\Delta m_{32/21}^2$ and $\sin^2 2\theta_{12} < 0.7\%$.
 - ► $\sin^2 2\theta_{13}$ precision 15%. (Daya Bay: < 3%).
 - Test $U_{\rm PMNS}$ unitarity on < 1% level

 \hookrightarrow similar to quark sector.

Mixing Reactor $\overline{\nu} \ \Delta m_{21}^2 \ \sin^2 2\theta_{13} \ \overline{\nu}_s$ NMO

Physics with TAO

- Precision reactor $\overline{\nu}_e$ spectra:
 - Total spectrum.
 - \blacktriangleright ²³⁵U/²³⁹Pu spectra.
- Search for sterile neutrino.

- Neutrino mass ordering (NMO)
 - 3σ NMO sensitivity within 6 8 years.
 - 4σ with Δm_{32}^2 input from accelerator experiments.
 - ► > 5σ combined analysis with IceCube within 3–7 years or PINGU in 2 years.
 - Combination with accelerator experiments promising.
- Neutrino oscillation parameters measurement
 - $\blacktriangleright~\sim 20$ oscillation cycles in a single experiment.
 - Expected precision for $\Delta m_{32/21}^2$ and $\sin^2 2\theta_{12} < 0.7\%$.
 - $\sin^2 2\theta_{13}$ precision 15%. (Daya Bay: < 3%).
 - Test $U_{\rm PMNS}$ unitarity on < 1% level

 \hookrightarrow similar to quark sector.

- Atmospheric neutrinos
 - Measure θ_{23} with 6° precision.
 - Complimentary NMO sensitivity.

Maxim Gonchar (DLNP, JINR)

Physics with TAO

• Precision reactor $\overline{\nu}_e$ spectra:

Mixing Reactor $\overline{\nu} \Delta m_{21}^2 \sin^2 2\theta_{13} \overline{\nu}_s$ NMO

- Total spectrum.
- \blacktriangleright ²³⁵U/²³⁹Pu spectra.
- Search for sterile neutrino.

- Solar neutrino
 - \blacktriangleright 1000 $^7\mathrm{Be}$ and 10 $^8\mathrm{B}$ neutrino interactions per day.

- Solar neutrino ►
 - $\blacktriangleright~1000~^7Be$ and 10 8B neutrino interactions per day.
- SuperNOVA
 - Sensitivity: flavor content, energy spectrum, time evolution.
 - ▶ 10k events (5k via IBD) for SN @ 10kpc.
- Diffuse SuperNOVA background (DSNB)
 - 3σ sensitivity in 10 years or strongest constraint.

- Solar neutrino
 - $\blacktriangleright~1000~^7Be$ and 10 8B neutrino interactions per day.
- SuperNOVA
 - Sensitivity: flavor content, energy spectrum, time evolution.
 - ▶ 10k events (5k via IBD) for SN @ 10kpc.
- Diffuse SuperNOVA background (DSNB)
 - 3σ sensitivity in 10 years or strongest constraint.
- Geo neutrino 🕨
 - ▶ 400 500 neutrinos per year.
 - ► Largest statistics. Precision 5% in 10 years.

Sensitivity: flavor content, energy spectrum, time evolution.

NEUTRINO PHYSICS AT JUNO II

▶ 1000 ⁷Be and 10 ⁸B neutrino interactions per day.

 \triangleright 3 σ sensitivity in 10 years or strongest constraint.

Largest statistics. Precision 5% in 10 years.

• Competitive sensitivity via $p \rightarrow \overline{\nu} + K^+$.

10k events (5k via IBD) for SN @ 10kpc. Diffuse SuperNOVA background (DSNB)

Proton decav

Geo neutrino

Solar neutrino

SuperNOVA

Triple coincidence signal. Maxim Gonchar (DLNP, JINR)

► 400 - 500 neutrinos per year.

Reactor V.

JUNO SCHEDULE

NMO ESTIMATION STATUS

✓ JUNO alone: $\sim 3\sigma$

NMO ESTIMATION STATUS

- ✓ JUNO alone: $\sim 3\sigma$
- ✓ +external constrain on Δm_{32}^2 : ~ 4 σ

NMO ESTIMATION STATUS

✓ JUNO alone: $\sim 3\sigma$

✓ Combined with accelerator experiment: $> 5\sigma$ ↔ sensitivity boost due to tension for wrong NMO

✓ +external constrain on Δm_{32}^2 : ~ 4 σ

Reactor $\overline{\nu}_e$

Summary

• Reactor $\overline{\nu}_e$ studies have long history

- Reactor $\overline{\nu}_e$ studies have long history
- Nowadays reactor $\overline{\nu}_e$ provide a broad range of neutrino oscillation studies

- Reactor $\overline{\nu}_e$ studies have long history
- Nowadays reactor $\overline{\nu}_e$ provide a broad range of neutrino oscillation studies
- Nearest future reactor neutrino experiments:

- Reactor $\overline{\nu}_e$ studies have long history
- Nowadays reactor $\overline{\nu}_e$ provide a broad range of neutrino oscillation studies
- Nearest future reactor neutrino experiments:
 - ▶ NMO, oscillation parameters and reactor spectrum: JUNO and TAO

- Reactor $\overline{\nu}_e$ studies have long history
- Nowadays reactor $\overline{\nu}_e$ provide a broad range of neutrino oscillation studies
- Nearest future reactor neutrino experiments:
 - ▶ NMO, oscillation parameters and reactor spectrum: JUNO and TAO
 - Sterile neutrino: MONUMENT, Neutrino-5, NuLAT

- Reactor $\overline{\nu}_e$ studies have long history
- Nowadays reactor $\overline{\nu}_e$ provide a broad range of neutrino oscillation studies
- Nearest future reactor neutrino experiments:
 - ▶ NMO, oscillation parameters and reactor spectrum: JUNO and TAO
 - Sterile neutrino: MONUMENT, Neutrino-5, NuLAT
 - CE ν NS and reactor spectrum: ν GEN, RED-100, RECOCHET, MINER, NUCLEUS

- Reactor $\overline{\nu}_e$ studies have long history
- Nowadays reactor $\overline{\nu}_e$ provide a broad range of neutrino oscillation studies
- Nearest future reactor neutrino experiments:
 - ▶ NMO, oscillation parameters and reactor spectrum: JUNO and TAO
 - Sterile neutrino: MONUMENT, Neutrino-5, NuLAT
 - ▶ CE*v*NS and reactor spectrum: *v*GEN, RED-100, RECOCHET, MINER, NUCLEUS
 - Reactor monitoring: Angra, Chandler, Panda, Watchman

Thank you for your attention!

Spare slides:

- Open questions
- Nobel prizes

8 Daya Bay

- Energy model
- Relative efficiency and energy scale
- Oscillations
- Spectra
- Wave Packets
- Sterile

9 JUNO

PMT status

Spares Neutrino Daya Bay JUNO

Open questions Nobel prizes

OPEN NEUTRINO QUESTIONS AND TASKS

- Precision measurement of oscillation parameters
- Neutrino mass hierarchy determination
- CP-violation observation and δ_{CP} measurement
- ▶ θ_{23} octant determination
- Testing the unitarity of neutrino mixing matrix
- Exotic searches
 - Sterile neutrinos
 - Non-standard interactions
 - Lorenz invariance violation

- Neutrino mass
 - Direct neutrino mass measurement
 - Observation of 0νββ decay
- Astrophysics and geophysics
 - Solar neutrinos flux measurement
 - Observation of solar CNO neutrinos
 - Geo-neutrino flux measurement
 - Observation of SuperNova neutrinos
 - Observation of diffuse SuperNova neutrinos
 - Observation of relic neutrinos
 - Observation of ultra high-energy neutrinos and their sources
- Other questions:
 - Reactor antineutrino spectrum measurement

NEUTRINO PRIZES

- Nobel prize 1995 Frederick Reines: discovery of electron antineutrino.
- Nobel prize 1988 Leon M. Lederman, Melvin Schwartz and Jack Steinberger:

discovery of muon neutrino.

- Nobel prize 2002 Raymond Davis, Jr., Masatoshi Koshiba: solar neutrinos and SN 1987.
- Nobel prize 2015 Takaaki Kajita and Arthur B. McDonald: discovery of neutrino oscillations.
- Breakthrough prize 2015 Daya Bay, KamLAND, K2K & T2K, SNO and SuperK collaborations:

 $discovery/exploration\ of\ neutrino\ oscillations.$

NEUTRINO PRIZES

- Nobel prize 1995 Frederick Reines: discovery of electron antineutrino.
- Nobel prize 1988 Leon M. Lederman, Melvin Schwartz and Jack Steinberger:

discovery of muon neutrino.

- Nobel prize 2002 Raymond Davis, Jr., Masatoshi Koshiba: solar neutrinos and SN 1987.
- Nobel prize 2015 Takaaki Kajita and Arthur B. McDonald: discovery of neutrino oscillations.
- Breakthrough prize 2015 Daya Bay, KamLAND, K2K & T2K, SNO and SuperK collaborations:

discovery/exploration of neutrino oscillations.

Open questions Nobel prizes

NEUTRINO PRIZES

- Nobel prize 1995 Frederick Reines: discovery of electron antineutrino.
- Nobel prize 1988 Leon M. Lederman, Melvin Schwartz and Jack Steinberger:

discovery of muon neutrino.

- Nobel prize 2002 Raymond Davis, Jr., Masatoshi Koshiba: solar neutrinos and SN 1987.
- Nobel prize 2015 Takaaki Kajita and Arthur B. McDonald: discovery of neutrino oscillations.
- Breakthrough prize 2015 Daya Bay, KamLAND, K2K & T2K, SNO and SuperK collaborations:

 $discovery/exploration\ of\ neutrino\ oscillations.$

NEUTRINO PRIZES

- Nobel prize 1995 Frederick Reines: discovery of electron antineutrino.
- Nobel prize 1988 Leon M. Lederman, Melvin Schwartz and Jack Steinberger:

discovery of muon neutrino.

- Nobel prize 2002 Raymond Davis, Jr., Masatoshi Koshiba: solar neutrinos and SN 1987.
- Nobel prize 2015 Takaaki Kajita and Arthur B. McDonald: discovery of neutrino oscillations.
- Breakthrough prize 2015 Daya Bay, KamLAND, K2K & T2K, SNO and SuperK collaborations:

 $discovery/exploration\ of\ neutrino\ oscillations.$

Open questions Nobel prizes

NEUTRINO PRIZES

- Nobel prize 1995 Frederick Reines: discovery of electron antineutrino.
- Nobel prize 1988 Leon M. Lederman, Melvin Schwartz and Jack Steinberger:

discovery of muon neutrino.

- Nobel prize 2002 Raymond Davis, Jr., Masatoshi Koshiba: solar neutrinos and SN 1987.
- Nobel prize 2015 Takaaki Kajita and Arthur B. McDonald: discovery of neutrino oscillations.
- Breakthrough prize 2015 Daya Bay, KamLAND, K2K & T2K, SNO and SuperK collaborations:

discovery/exploration of neutrino oscillations.

DATA SET: 1958 DAQ DAYS

	EH1		EH2		EH3			
	AD1	AD2	AD3	AD8	AD4	AD5	AD6	AD7
$\overline{\nu}_e$ candidates	830036	964381	889171	784736	127107	127726	126666	113922
DAQ live time (days)	1536.621	1737.616	1741.235	1554.044	1739.611	1739.611	1739.611	1551.945
$\varepsilon_{\mu} \times \varepsilon_{m}$	0.8050	0.8013	0.8369	0.8360	0.9596	0.9595	0.9592	0.9595
Accidentals (day ⁻¹)	8.27 ± 0.08	8.12 ± 0.08	6.00 ± 0.06	5.86 ± 0.06	1.06 ± 0.01	1.00 ± 0.01	1.03 ± 0.01	0.86 ± 0.01
Fast neutron (AD ⁻¹ day ⁻¹)	0.79 ± 0.10		0.57 ± 0.07		0.05 ± 0.01			
${}^{9}\text{Li}/{}^{8}\text{He} (\text{AD}^{-1} \text{ day}^{-1})$	2.38 =	± 0.66	1.59 =	± 0.49		0.19 =	± 0.08	
Am-C correlated(day ⁻¹)	0.17 ± 0.07	0.15 ± 0.07	0.14 ± 0.06	0.13 ± 0.06	0.06 ± 0.03	0.05 ± 0.02	0.05 ± 0.02	0.04 ± 0.02
$^{13}C(\alpha, n)^{16}O (day^{-1})$	0.08 ± 0.04	0.06 ± 0.03	0.04 ± 0.02	0.06 ± 0.03	0.04 ± 0.02	0.04 ± 0.02	0.04 ± 0.02	0.04 ± 0.02
$\overline{\nu}_e$ rate (day ⁻¹)	659.36 ± 1.00	681.09 ± 0.98	601.83 ± 0.82	595.82 ± 0.85	$\overline{74.75\pm0.23}$	75.19 ± 0.23	74.56 ± 0.23	75.33 ± 0.24

✓ 1958 days of DAQ data.

- \checkmark Above 3.9M IBD candidates, 0.5M of them are on a far site.
- ✓ Statistical uncertainty in $\overline{\nu}_e$ rates: 0.1% 0.3%.
- ✓ Background contribution to $\overline{\nu}_e$ rate: 1.5% 2%.
- ✓ Background uncertainty in $\overline{\nu}_e$ rates 0.1%.

(high statistics)

(low background)

(low systematics)

(+highly redundant)

Systematics: 1958 DAQ days

	Parameters	Uncorr.	Uncertainty	Comment
Free	Oscillation parameters (reactor)	Р		
	Oscillation parameters (solar)	Р		negligible
Reactor	Thermal power	R	0.5%	
	Fission fractions	RI*	5%	
	Average fission energy	1	0.12% - 0.25%	
	Off-equilibrium correction	RI	30%	
	SNF contribution	R	30%	
	$\overline{ u}_e$ spectra	IE	2% - 30%	
Detector	Relative efficiency	D	0.13%	dominant
	Relative energy scale	D	0.2%	part. correlated
	Energy scale non-linearity	Р	${<}1\%$,
	Energy resolution	Р	30%	negligible
	IAV energy distortion	D	4%	
Background	Accidentals rate	D	0.4%	
	⁸ He/ ⁹ Li rate	S	30%	secondary
	9 Li contribution to 8 He $/^{9}$ Li		5%	negligible
	Fast neutrons rate	S	10%-17%	
	²⁴¹ Am- ¹³ C rate		40% - 45%	
	${}^{13}\mathrm{C}(lpha, \textit{n}){}^{16}\mathrm{O}$ rate	D	50%	
	Background spectra shape		no	negligible

🚑 💼

Uncorrelated groups

- Parameter
- Reactor
- Fissile Isotope
- Site
- Detector
- Energy bin
 - * part. correlation

Energy model ε and E Spectra WP $\overline{\nu}_s$

ENERGY RESPONSE CALIBRATION

Automated calibration units (ACU)

- Three ACUs with: 60 Co (weekly), 68 Ge, 241 Am- 13 C, LED.
- Continuous energy scale calibration with spallation neutrons.

Energy response nonlinearity

- LS nonlinearity (quenching and Cherenkov) + Electronics nonlinearity.
- × Difficult to disentangle.

Updates

✓ ADC/FADC simultaneous readout in a EH1-AD1 since 2016

 \hookrightarrow measurement of electronics nonlinearity.

✓ Deployment of $\rm ^{60}Co$ calibration sources with different coating material (early 2017)

 \hookrightarrow measurement of shadowing effects.

 $\checkmark\,$ MC simulation of energy loss in $^{60}{\rm Co}$ coating material.

Energy model ε and E Spectra WP $\overline{\nu}_s$

Data

Total 12B

Best fit model

¹²N: 3.3%

ENERGY RESPONSE CALIBRATION

arXiv:1902.08241, NIMA

- Decoupled electronics and 1 scintillator nonlinearity
- \checkmark Continuous ¹²B spectrum
- Combined positron energy nonlinearity uncertainty: $1\% \rightarrow 0.5\%$

October 24, 2020 61 / 54

Energy model ε and E Spectra WP $\overline{\nu}_s$

Relative efficiency and relative energy scale

• Relative efficiency $\rightarrow \sin^2 2\theta_{13}$ uncertainty.

- ✓ Relative Gd capture fraction unc. < 0.10%.
- ✓ Relative efficiency uncertainty < 0.13%.
 - Maxim Gonchar (DLNP, JINR)

• Relative energy scale $ightarrow \Delta m^2_{32}$ uncertainty.

✓ Relative energy scale uncertainty < 0.2%.

Energy model $\,\varepsilon$ and E Spectra WP $\,\overline{\nu}_{S}$

Individual spectra of 235 U and 239 Pu

Observed positron spectrum

• Disagreement with Huber+Mueller:

5.3 σ global/6.3 σ local.

Energy model ε and E Spectra WP $\overline{\nu}_S$

Individual spectra of 235 U and 239 Pu

Observed positron spectrum

• 235 U shape discrepancy: 4σ .

WAVE PACKET EFFECTS

Maximal coherence: oscillations

- A wave-packet (WP) model modifies the oscillation probability formula.
- New parameter σ_p effective dispersion of neutrino wave-packet.
- Predicts suppression of oscillations:
 - ► at distances exceeding the **coherence length** $L^{\text{coh}} = \frac{L^{\text{osc}}}{\sqrt{2\pi\sigma_{rel}}}$,
 - if $\sigma_x \gg L^{\rm osc}$,
- No experimental bounds.

WAVE PACKET EFFECTS

Maximal coherence: oscillations

Partial coherence: oscillations suppressed

- Plane-wave (PW) model of neutrino oscillations is not self-consistent.
- A wave-packet (WP) model modifies the oscillation probability formula.
- New parameter σ_p effective dispersion of neutrino wave-packet.
- Predicts suppression of oscillations:
 - ► at distances exceeding the **coherence length** $L^{\text{coh}} = \frac{L^{\text{osc}}}{\sqrt{2}\pi\sigma_{\text{rel}}}$,
 - if $\sigma_x \gg L^{\rm osc}$,
- No experimental bounds.

where $\sigma_{
m rel}=\sigma_p/p.$ where $\sigma_x=1/(2\sigma_p).$

Partial coherence:

oscillations suppressed

Energy model ε and E Spectra WP $\overline{\nu}_{s}$

WAVE PACKET EFFECTS

Maximal coherence:

oscillations

~No coherence: no oscillations incoherent sum

• Plane-wave (PW) model of neutrino oscillations is not self-consistent.

- A wave-packet (WP) model modifies the oscillation probability formula.
- New parameter σ_p effective dispersion of neutrino wave-packet.
- Predicts suppression of oscillations:
 - ► at distances exceeding the **coherence length** $L^{\text{coh}} = \frac{L^{\text{osc}}}{\sqrt{2}\pi\sigma_{\text{rel}}}$,
 - if $\sigma_x \gg L^{\rm osc}$,
- No experimental bounds.

where $\sigma_{\rm rel} = \sigma_p / p$.

where $\sigma_x = 1/(2\sigma_p)$.

Reactor $\overline{\nu}_{\alpha}$

LIGHT STERILE NEUTRINO SEARCH

621 days, arXiv:1607.01174, PRL

- Sterile neutrino cause spectral distortions, different at the near and far sites.
- Relative measurement.
- \checkmark independent of reactor related systematics.
- Consistent with 3-flavor oscillations.

Reactor $\overline{\nu}_{\alpha}$

LIGHT STERILE NEUTRINO SEARCH UPDATE

1230 days+MINOS, arXiv:2002.00301

- Sterile neutrino cause spectral distortions, different at the near and far sites.
- ✓ Relative measurement.
- ✓ independent of reactor related systematics.
- Consistent with 3-flavor oscillations.

LIGHT STERILE NEUTRINO SEARCH UPDATE

1230 days+MINOS, arXiv:2002.00301

- Daya Bay and Bugey-3 strongly constrain $\Delta m^2_{41} \,\, {\rm and}\, \sin^2 2\theta_{14}.$
- Daya Bay, Bugey-3 and MINOS data allows to constrain Δm^2_{41} and $\sin^2 2\theta_{14} \sin^2 \theta_{24}$.
- ✓ LSND and MiniBooNE parameters space is excluded at the 90% C.L.

LIGHT STERILE NEUTRINO SEARCH UPDATE

1230 days+MINOS, arXiv:2002.00301

- Daya Bay and Bugey-3 strongly constrain Δm^2_{41} and $\sin^2 2\theta_{14}.$
- Daya Bay, Bugey-3 and MINOS data allows to constrain Δm^2_{41} and $\sin^2 2\theta_{14} \sin^2 \theta_{24}$.
- ✓ LSND and MiniBooNE parameters space is excluded at the 90% C.L.
- ✓ LSND and MiniBooNE parameters space is excluded at the 99% C.L. for $\Delta m_{41}^2 < 1.2 \, {\rm eV}^2$.

 10^{3}

99% C.L. Allowed

JUNO CONSTRUCTION STATUS

Civil construction

- Most of the tunnels finished.
- Transportation tunnel 389/506 m.
- Exp hall: above hall almost finished.
- TODO: detector cavern.
- Expect to finish by the end of 2020.

PMT

JUNO CONSTRUCTION STATUS

Civil construction

- Most of the tunnels finished.
- Transportation tunnel 389/506 m.
- Exp hall: above hall almost finished.
- TODO: detector cavern.
- Expect to finish by the end of 2020.

Experiment preparation

- 1:12 prototype at IHEP: 600 tons.
- TAO: CDR coming soon.
- OSIRIS R&D: Online Scintillator Internal Radioactivity Investigation System
 - Sensitivity: 10^{-16} g/g for U/Th within 24 h.

PMT

Detector assembly technique:

https://www.youtube.com/watch?v=B_uPQZPgU00

JUNO PMT STATUS

۹ 💼

Large 20" PMT system

- 12'768 MCP PMTs by NNVT: delivered.
- 5'000 Dynode PMTs by Hamamatsu: delivered.
- Testing: mostly done.
- Protection cover: production started.

NNVT MCP

PMT

Hamamatsu Dynode

JUNO PMT STATUS

Large 20" PMT system

- 12'768 MCP PMTs by NNVT: delivered.
- 5'000 Dynode PMTs by Hamamatsu: delivered.
- Testing: mostly done.
- Protection cover: production started.

Small 3" PMT system

- ✓ Complementary PMT system:
 - Increase dynamic range.
 Control systematics.
- 26'000 PMTs by HZC: produced.

NNVT MCP

PMT

Hamamatsu Dynode

JUNO PMT STATUS

Large 20" PMT system

- 12'768 MCP PMTs by NNVT: delivered.
- 5'000 Dynode PMTs by Hamamatsu: delivered.
- Testing: mostly done.
- Protection cover: production started.

Small 3" PMT system

- ✓ Complementary PMT system:
 - Increase dynamic range.
 Control systematics.
- 26'000 PMTs by HZC: produced.

	NNVT	Hamamatsu	HZC
PDE, %	28.3	28.1	24
TTS, ns	12	2.7	1.5

NNVT MCP

Hamamatsu Dynode

