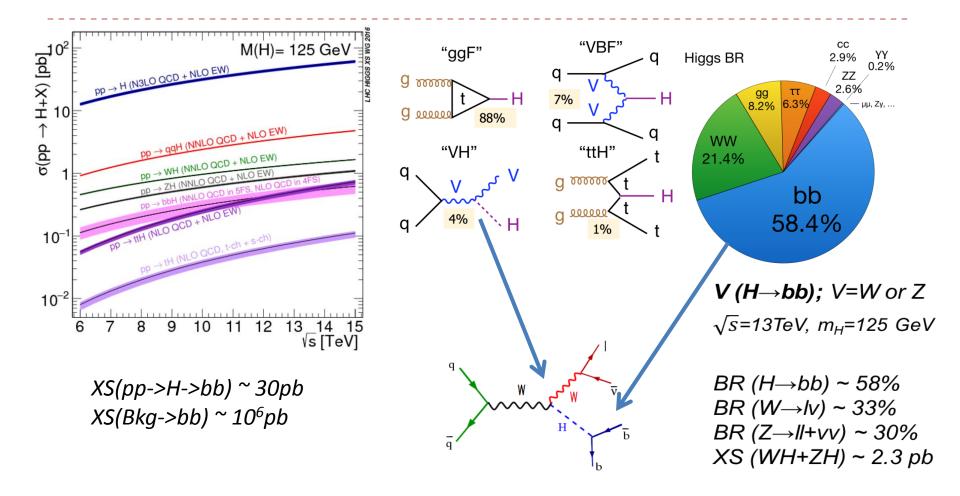
A study of the VH associated production process


Faig Ahmadov & VHbb WG

JINR Prize Competition for young scientists and specialists JINR, Dubna

6 December 2019

H production & decay channels

The leptonic decays of the vector boson, W or Z can be used for triggering and background reduction purposes.

XS(VH-llbb) ~ **0.4 pb** XS(Bkg) ~ **10**³ pb

 \geq 4 July 2012 - observation of the SM Higgs boson in ATLAS and CMS experiments;

 \geq 4 July 2012 - observation of the SM Higgs boson in ATLAS and CMS experiments;

> Measured mass of the SM Higgs boson: 125,09 GeV & spin-parity: $J^{P} = 0^{+}$;

 \geq 4 July 2012 - observation of the SM Higgs boson in ATLAS and CMS experiments;

- > Measured mass of the SM Higgs boson: 125,09 GeV & spin-parity: $J^{P} = 0^{+}$;
- > The first observed decay channels: $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ$, & $H \rightarrow WW$;

 \geq 4 July 2012 - observation of the SM Higgs boson in ATLAS and CMS experiments;

> Measured mass of the SM Higgs boson: 125,09 GeV & spin-parity: $J^{P} = 0^{+}$;

> The first observed decay channels: $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ$, & $H \rightarrow WW$;

> All observed production and decay channels: ggF, VBF, $t\bar{t}H$, VH and $\gamma\gamma$, ZZ, WW, $\tau\tau$, $b\bar{b}$;

 \geq 4 July 2012 - observation of the SM Higgs boson in ATLAS and CMS experiments;

> Measured mass of the SM Higgs boson: 125,09 GeV & spin-parity: $J^{P} = 0^{+}$;

> The first observed decay channels: $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ$, & $H \rightarrow WW$;

> All observed production and decay channels: ggF, VBF, $t\bar{t}H$, VH and $\gamma\gamma$, ZZ, WW, $\tau\tau$, $b\bar{b}$;

> H→ $b\bar{b}$ plays an important role since this is the dominant decay mode at this mass ($BR(H \rightarrow b\bar{b}) \approx 58\%$);

 \geq 4 July 2012 - observation of the SM Higgs boson in ATLAS and CMS experiments;

> Measured mass of the SM Higgs boson: 125,09 GeV & spin-parity: $J^{P} = 0^{+}$;

> The first observed decay channels: $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ$, & $H \rightarrow WW$;

> All observed production and decay channels: ggF, VBF, $\bar{t}tH$, VH and $\gamma\gamma$, ZZ, WW, $\tau\tau$, $b\bar{b}$;

> H→ $b\bar{b}$ plays an important role since this is the dominant decay mode at this mass ($BR(H \rightarrow b\bar{b}) \approx 58\%$);

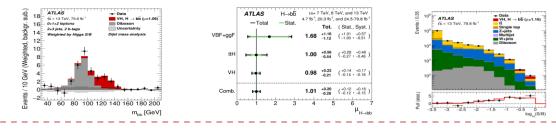
> VH(bb) significance - **4.9** σ (half of Run 2 data ~80fb⁻¹);

 \geq 4 July 2012 - observation of the SM Higgs boson in ATLAS and CMS experiments;

> Measured mass of the SM Higgs boson: 125,09 GeV & spin-parity: $J^{P} = 0^{+}$;

> The first observed decay channels: $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ$, & $H \rightarrow WW$;

> All observed production and decay channels: ggF, VBF, $\bar{t}tH$, VH and $\gamma\gamma$, ZZ, WW, $\tau\tau$, $b\bar{b}$;


> H→ $b\bar{b}$ plays an important role since this is the dominant decay mode at this mass ($BR(H \rightarrow b\bar{b}) \approx 58\%$);

> VH(bb) significance - **4.9** σ (half of Run 2 data ~80fb⁻¹);

1. Combination of Run 2 (13 TeV) with Run 1 (7TeV & 8TeV). Obs. sig. 4.9o and exp. sig. 5.1o

2. Combination of VH($H \rightarrow bb$) with the $t\bar{t}H(H \rightarrow bb)$ & VBF+ggH ($H \rightarrow bb$). Obs. sig. 5.4 σ and exp. sig. 5.5 σ

3. Combination Run 2 $VH(H \rightarrow bb)$ result with $VH(H \rightarrow \gamma\gamma) \& VH(H \rightarrow ZZ^* \rightarrow 4I)$. Obs. sig. 5.3 σ and exp. sig. 4.8 σ

 \geq 4 July 2012 - observation of the SM Higgs boson in ATLAS and CMS experiments;

> Measured mass of the SM Higgs boson: 125,09 GeV & spin-parity: $J^{P} = 0^{+}$;

> The first observed decay channels: $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ$, & $H \rightarrow WW$;

> All observed production and decay channels: ggF, VBF, $\bar{t}tH$, VH and $\gamma\gamma$, ZZ, WW, $\tau\tau$, $b\bar{b}$;

> H→ $b\bar{b}$ plays an important role since this is the dominant decay mode at this mass ($BR(H \rightarrow b\bar{b}) \approx 58\%$);

 \succ VH(bb) significance - **4.9** σ (half of Run 2 data ~80fb⁻¹);

 \geq 4 July 2012 - observation of the SM Higgs boson in ATLAS and CMS experiments;

> Measured mass of the SM Higgs boson: 125,09 GeV & spin-parity: $J^{P} = 0^{+}$;

> The first observed decay channels: $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ$, & $H \rightarrow WW$;

> All observed production and decay channels: ggF, VBF, $t\bar{t}H$, VH and $\gamma\gamma$, ZZ, WW, $\tau\tau$, $b\bar{b}$;

> H→ $b\bar{b}$ plays an important role since this is the dominant decay mode at this mass ($BR(H \rightarrow b\bar{b}) \approx 58\%$);

 \succ VH(bb) significance - **4.9** σ (half of Run 2 data ~80fb⁻¹);

 $ightarrow H \rightarrow b\overline{b}$ and VH observation – after combining with other channels *Phys.Lett.B786(2018)59–86;*

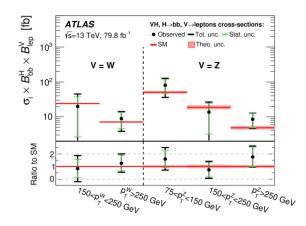
 \geq 4 July 2012 - observation of the SM Higgs boson in ATLAS and CMS experiments;

> Measured mass of the SM Higgs boson: 125,09 GeV & spin-parity: $J^{P} = 0^{+}$;

> The first observed decay channels: $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ$, & $H \rightarrow WW$;

> All observed production and decay channels: ggF, VBF, $\bar{t}tH$, VH and $\gamma\gamma$, ZZ, WW, $\tau\tau$, $b\bar{b}$;

> H→ $b\bar{b}$ plays an important role since this is the dominant decay mode at this mass ($BR(H \rightarrow b\bar{b}) \approx 58\%$);


 \succ VH(bb) significance - **4.9** σ (half of Run 2 data ~80fb⁻¹);

 $> H \rightarrow b\overline{b}$ and VH observation – after combining with other channels *Phys.Lett.B786(2018)59–86;*

> Measurement of VH, $H \rightarrow b\overline{b}$ production (2015-2017 data);

Last public results (measurement)

"Measurement of VH, H->bb production as a function of the vector-boson transverse momentum in 13TeV pp collisions with the ATLAS detector" *JHEP 05 (2019) 141*

Measured VH, V \rightarrow leptons reduced stage-1 simplified template cross-sections times the H \rightarrow bb branching ratio.

Best-fit values and uncertainties for the VH, V \rightarrow leptons reduced stage-1 STXS times the H \rightarrow bb branching ratio, in the 5-POI and 3-POI schemes. All leptonic decays of the V bosons (including those to τ -leptons, ℓ =e,µ, τ) are considered.

Measurement region	SM pr	redio	ction	R	esul	t	Stat	. unc.		S	yst. u	nc. [ft)]	
$(y_H < 2.5, H \rightarrow b\bar{b})$] [fb]			[fb]		[fb]	Th	. sig.	Th.	bkg.	Е	xp.
			5-P	OI sche	eme									
$W \rightarrow \ell \nu$; 150 < $p_{\rm T}^V$ < 250 GeV	24.0	±	1.1	20	±	25	±	17	±	2	±	13	±	9
$W \rightarrow \ell \nu; p_{\rm T}^V > 250 { m ~GeV}$	7.1	±	0.3	8.8	±	5.2	±	4.4	±	0.5	±	2.5	±	0.9
$Z \rightarrow \ell \ell, \nu \nu; 75 < p_{\rm T}^V < 150 \text{ GeV}$	50.6	±	4.1	81	±	45	±	35	±	10	±	21	±	19
$Z \rightarrow \ell \ell, \nu \nu; 150 < p_{\rm T}^V < 250 {\rm GeV}$	18.8	±	2.4	14	±	13	±	11		1	±	6	±	3
$Z \rightarrow \ell \ell, \nu \nu; p_{\rm T}^V > 250 {\rm GeV}$	4.9	±	0.5	8.5	±	4.0	±	3.7	±	0.8	±	1.2	±	0.6
			3-P	OI sche	eme									
$W \rightarrow \ell \nu; p_{\rm T}^V > 150 { m ~GeV}$	31.1	±	1.4	35	±	14	±	9		2	±	9	±	4
$Z \rightarrow \ell \ell, \nu \nu; 75 < p_{\rm T}^V < 150 \text{ GeV}$	50.6	±	4.1	81	±	45	±	35	±	10	±	21	±	19
$Z \rightarrow \ell \ell, \nu \nu; p_{\mathrm{T}}^{V} > 150 \text{ GeV}$	23.7	±	3.0	28.4	±	8.1	±	6.4	±	2.4	±	3.6	±	2.3

The measurements are in agreement with the Standard Model predictions, even in high pVT (> 250 GeV) regions that are most sensitive to enhancements from potential anomalous interactions between the Higgs boson and the electroweak gauge bosons.

Data and simulated samples

- Data: $\sqrt{s=13TeV}$, **79.8±1.6 fb**⁻¹ (2015 2017).
- The **generators** used for the simulation of the signal and background processes:

Process	ME generator	ME PDF	PS and Hadronisation	UE model tune	Cross-section order
Signal, mass set to) 125 GeV and $b\bar{b}$ branching frac	tion to 58%			
$\begin{array}{c} qq \to WH \\ \to \ell \nu b\bar{b} \end{array}$	Роwнед-Box v2 [76] + GoSam [79] + MiNLO [80,81]	NNPDF3.0NLO ^(*) [77]	Рутніа 8.212 [68]	AZNLO [78]	NNLO(QCD)+ NLO(EW) [82–88]
$qq ightarrow ZH ightarrow u u u ar{b} ar{b} / \ell \ell b ar{b}$	Powheg-Box v2 + GoSam + MiNLO	$NNPDF3.0NLO^{(\star)}$	Pythia 8.212	AZNLO	$\frac{\text{NNLO}(\text{QCD})^{(\dagger)}}{\text{NLO}(\text{EW})} +$
$gg ightarrow ZH \ ightarrow u u b ar{b} / \ell \ell b ar{b}$	Powheg-Box v2	NNPDF3.0NLO ^(*)	Pythia 8.212	AZNLO	NLO+ NLL [89–93]
Top quark, mass s	et to 172.5 GeV				
$tar{t}$ s-channel t-channel Wt	Роwнед-Вох v2 [94] Роwнед-Вох v2 [97] Роwнед-Вох v2 [97] Роwнед-Вох v2 [100]	NNPDF3.0NLO NNPDF3.0NLO NNPDF3.0NLO NNPDF3.0NLO	Рутніа 8.230 Рутніа 8.230 Рутніа 8.230 Рутніа 8.230	A14 [95] A14 A14 A14 A14	NNLO+NNLL [96] NLO [98] NLO [99] Approximate NNLO [101]
Vector boson + je	ts				
$W \to \ell \nu Z/\gamma^* \to \ell \ell Z \to \nu \nu$	Sherpa 2.2.1 [71, 102, 103] Sherpa 2.2.1 Sherpa 2.2.1	NNPDF3.0NNLO NNPDF3.0NNLO NNPDF3.0NNLO	Sherpa 2.2.1 [104, 105] Sherpa 2.2.1 Sherpa 2.2.1	Default Default Default	NNLO [106] NNLO NNLO
Diboson					
$\begin{array}{c} qq \rightarrow WW \\ qq \rightarrow WZ \\ qq \rightarrow ZZ \\ gg \rightarrow VV \end{array}$	Sherpa 2.2.1 Sherpa 2.2.1 Sherpa 2.2.1 Sherpa 2.2.2	NNPDF3.0NNLO NNPDF3.0NNLO NNPDF3.0NNLO NNPDF3.0NNLO	Sherpa 2.2.1 Sherpa 2.2.1 Sherpa 2.2.1 Sherpa 2.2.2	Default Default Default Default	NLO NLO NLO NLO

Data: $\sqrt{s=13TeV}$, ~**140 fb**⁻¹ (2015 - 2018).

Additional filtered MC samples: V+jets, ttbar (100GeV - 200GeV, >200GeV)

Object selection

Event preselection: GRL, Vertex, min. 3 tracks, pile-up reweighting, triggers, Cleaning : MET cleaning, Jet cleaning, ...;

Electrons:

```
Loose: |\eta| < 2.47, E_T > 7 \text{GeV}, |d_0| < 0.1 \text{mm} (for 7TeV data), p_T \text{ cone}(0.2) < 0.04, OR Signal: Loose + E_T > 27 \text{GeV}, E_T \text{ cone}(0.3) < 0.04.
```

Muons:

```
Loose: |\eta| < 2.7, E_T > 7GeV, |d_0| < 0.1mm & |z_0| < 10mm, OR (jets electrons)
Signal: Loose + |\eta| < 2.5, E_T > 25GeV, E_T cone (0.3) < 0.04.
```

Jets:

<i>Veto:</i> $p_T > 20 \text{GeV } \& \eta < 2.5 \text{ or } p_T > 30$	$0 \text{GeV} \& 2.5 < \eta < 4.5$, OR with mu and el.
--	---

Signal: Veto + p_T > 20GeV & $|\eta|$ < 2.5

b-jets: The MV1 b-tagging algorithm is used to identify jets originating from b-quark fragmentation), MV1 with 70% eff.

MET: The missing transverse momentum E_T^{miss} is reconstructed as the negative vector sum of the momenta of leptons, hadronically decaying τ -leptons and jets, and of a 'soft term' built from additional tracks matched to the primary vertex.

Object selection updates

✓ Updated recommendation for jets & leptons.

✓ Isolation working points: LooseTrackOnly → FixedCutLoose.

✓ EMTopo or PFlow jets (already used by CMS):

•Higher jet multiplicity with PFlow in all 0/1/2L.

•JVT efficiency difference (JVT>0.59(EM), >0.2 (PF); eff=92 % (EM), 97%(PF))

•PFlow has larger contamination of pile-up jets

•Resolution of PF is slightly better than EM in 0- & 2-lepton channel

✓ MET significance as an anti-QCD cut

•MET sig > 1.5, $d\varphi(b,b) < 140^{\circ} \rightarrow d\varphi(b,b) < 126^{\circ}$ (S/VB increase 3.1%)

✓ **b-jet energy correction**: Regression is getting better than muon-in-jet + PtReco \rightarrow maybe it will become default in future;

✓ B-tagging: Official b-tagging algorithms in ATLAS: MV2c10 (or DL1).

✓ MV2 -> DL1 -> DL1r (DL1+RNNIP) -> DL1rmu (DL1+RNNIP+SMT) improvement in light rejection ~50% & c-rejection by more than 20%.

✓ Usage of Particle Flow jets consolidated at training level, being actively investigated at calibration stage.

✓ No new recommendations for EMTopo jets will be available (no new taggers, no calibrations with full Run 2 data).

EM/PF comparison for 1L

WΗ

ttbar

# j	mc16	EM	PF	Variation (%)
t	а	54.9344	52.6968	-4.1
2tag2jet	d	60.2752	55.8564	-7.3
2ta	е	71.3411	66.5553	-6.7
	ade	186.5507	175.1085	-6.1
3jet	а	49.9553	50.9416	2
2tag3jet	d	58.668	60.2477	2.7
	е	70.326	72.231	2.7
	ade	178.9493	183.4203	2.5

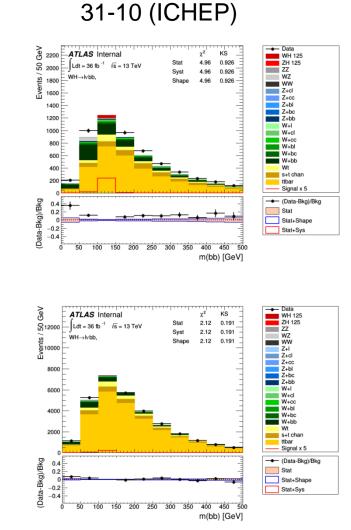
# j	mc16	EM	PF	Variation (%)
et	а	3410.63	3013.24	-11.7
2tag2jet	d	3847.86	3195.82	-16.9
2t	е	4621.82	3930.27	-15
	ade	11880.31	10139.33	-14.7
3jet	а	25845	23279.4	-9.9
2tag3jet	d	28582.4	24618.3	-13.9
	е	34794.3	29833.4	-14.3
	ade	89221.7	77731.1	-12.9

# j	data	EM	PF	Variation (%)
jet	2015	525	527	0.4
2tag2jet	2017	6429	5771	-10.2
2t	2018	7369	6501	-11.8
	sum	14323	12799	-10.6
et	2015	3043	2896	-4.8
2tag3jet	2017	34574	30955	-10.5
2ť	2018	40389	35658	-11.7
	sum	78006	69509	-10.9

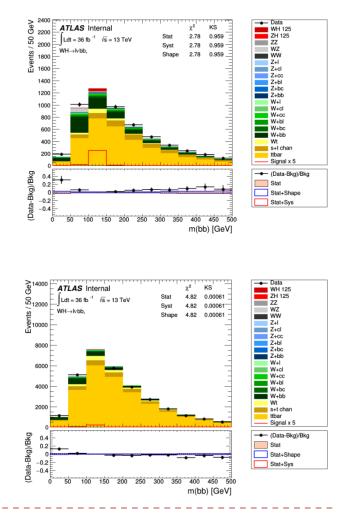
Data 15-18

Event selection

Selection	0-lepton	1-le <i>e</i> sub-channel	$\mu \text{ sub-channel}$	2-lepton
Trigger	$E_{ au}^{ m miss}$	Single lepton	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single lepton
Leptons	0 loose leptons with $p_{\rm T} > 7 {\rm ~GeV}$	$\begin{array}{l}1 \ tight \ electron\\ p_{\rm T} > 27 \ {\rm GeV}\end{array}$	$1 tight muon p_{\rm T} > 25 { m GeV}$	2 <i>loose</i> leptons with $p_{\rm T} > 7 \text{ GeV}$ > 1 lepton with $p_{\rm T} > 27 \text{ GeV}$
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 150 GeV	$p_{\rm T} > 21$ GeV > 30 GeV	$p_{\rm T} > 20$ GeV	\geq 1 lepton with $p_{\rm T} > 27$ dev
$m_{\ell\ell}$	_			$81~{\rm GeV} < m_{\ell\ell} < 101~{\rm GeV}$
Jets	Exactly $2 / E$	xactly 3 jets		Exactly 2 / \geq 3 jets
Jet $p_{\rm T}$			for $ \eta < 2.5$ $2.5 < \eta < 4.5$	
<i>b</i> -jets			b-tagged jets	
Leading <i>b</i> -tagged jet $p_{\rm T}$		> 45	$5 { m GeV}$	
H_{T}	> 120 GeV (2 jets), >150 GeV (3 jets)			_
$\min[\Delta \phi(ec{E}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{jets})]$	$> 20^{\circ} (2 \text{ jets}), > 30^{\circ} (3 \text{ jets})$			_
$\Delta \phi (ec{E}_{\mathrm{T}}^{\mathrm{miss}}, ec{bb})$	$> 120^{\circ}$			_
$\Delta \phi(\vec{b_1}, \vec{b_2})$	$< 140^{\circ}$			_
$\Delta \phi(ec{E}_{\mathrm{T}}^{\mathrm{miss}},ec{p}_{\mathrm{T}}^{\mathrm{miss}})$	$< 90^{\circ}$			_
$p_{\rm T}^V$ regions	> 150	${ m GeV}$		$75 \text{ GeV} < p_{\mathrm{T}}^{V} < 150 \text{ GeV}, > 150 \text{ GeV}$
Signal regions	_	$m_{bb} \ge 75 { m ~GeV}$ or	r $m_{ m top} \leq 225~{ m GeV}$	Same-flavour leptons Opposite-sign charges ($\mu\mu$ sub-channel)
Control regions	_	$m_{bb} < 75~{\rm GeV}$ an	d $m_{\rm top}>225~{\rm GeV}$	Different-flavour leptons Opposite-sign charges


Updates:

✓ 1-lepton: include 75GeV<pTV<150GeV
 ✓ 0/1/2-lepton: Split pTV>150GeV
 ↓
 150GeV<pTV<250GeV and pTV>250GeV
 ✓ CR -> CR low & CR high (dRbb)
 ✓ Harmonize dijet mass and mva analyses


Channel							
Selection	0-lepton	1-lepton	2-lepton				
m_{T}^W	-	$< 120 { m ~GeV}$	-				
$E_{\rm T}^{\rm miss}/\sqrt{S_{\rm T}}$	-	-	$< 3.5 \sqrt{\text{GeV}}$				
	p_{T}^{V} re	egions					
p_{T}^{V}	$75-150~{\rm GeV}$	$150-200~{\rm GeV}$	$> 200 { m GeV}$				
	(2-lepton only)						
$\Delta R(\vec{b}_1, \vec{b}_2)$	<3.0	<1.8	<1.2				

Additional cuts for Cut-flow analysis

CxAOD r32-07 validation

32-207

2tag2jet

2tag3jet

[2019-04-01] Tag r32-15 Main changes between 32-07 – 32-15 [2019-03-29] MR CxAODMaker: Updated Calibration release for Muon efficiency scale factor [2019-03-29] MR CxAODBootstrap_VHbb: Bump to AB.21.2.68 [2019-03-25] MR CxAODMaker: update electron ptcone, cluster eta and jet NumTrkPt1000PV [2019-03-25] MR CxAODReader_VHbb: Updating the Tight Isolation Cuts [2019-03-25] MR CxAODMaker: fix EL_EFF_Iso_TOTAL_1NPCOR_PLUS_UNCOR [2019-03-20] MR CxAODTools: add cluster eta and ptcone for electron; refactor CxAODProperties.cxx with the automatic script to be consistent with .h [2019-03-20] MR CxAODMaker: Master ckato xbb3: Removing leading 2 track jet b-tag requirement from hbb muon-in-jet correction, applying VR10 dR cut, muons eta up to 2.7 [2019-03-20] MR CxAODTools: Add QG Variables for QG Calibration [2019-03-18] MR CxAODReader VHbb: Further restructure histogram filling + fix duplicated filling [2019-03-11] MR CxAODOperations_VHbb: update to latest 2018 data ilumicalc file. Change GRL directory although it is... [2019-03-11] MR CxAODOperations_VHbb: use averageMu for PRW in mc16e as recommended [2019-03-09] MR CxAODBootstrap_VHbb: Bump to AB.21.2.66 [2019-03-06] MR CxAODMaker: Master ckato xbb to hbb migration [2019-03-01] MR CxAODTools: Missing L1Topo triggers in 2018 [2019-03-01] MR CxAODReader_VHbb: VR track jet overlap removal for 2L reader [2019-02-28] MR CxAODReader_VHbb: Add FSR selection. [2019-02-27] MR CxAODReader_VHbb: 1L VR Jet Overlap Removal Implementation [2019-02-26] MR CxAODMaker: Update JetSemileptonic.cxx to get now the PtReco from 32-07 ade instead of 31-10 ad [2019-02-26] MR CxAODMaker: adding LooseTrackOnly trigger SFs for Electrons [2019-02-26] MR CxAODTools: add trigToolLooseLHIsoLooseTrackOnly for electrons [2019-02-25] MR CxAODBootstrap_VHbb: Update /afs .root files location from 181026 to 190225 for new PtReco (32-10 ad -> 32-07 ade) [2019-02-25] MR CxAODReader_VHbb: Implementation OR in Olep reader [2019-02-25] MR CxAODBootstrap_VHbb: Update AnalysisBase to 21.2.64 [2019-02-25] MR CxAODMaker: Not applying met rebuilding for truth met [2019-02-22] MR CxAODMaker: Update Muon CP recommendation [2019-02-19] MR CxAODOperations_VHbb: Update submitReader.sh to turn of ggVV in period e that are missing now [2019-02-19] MR CxAODReader_VHbb: switched from trackjethybrid to trackjetcone [2019-02-19] MR CxAODOperations_VHbb: Update submitReader.sh to use in 0L e ZnunuC_PTV and ZnunuL_PTV [2019-02-19] MR CxAODReader VHbb: Add b-tag weight to MVATree VHbb [2019-02-19] MR CxAODTools: add 2018 MET trigger SFs [2019-02-18] MR CxAODReader: if doICHEP then FR else VR for v31 OneMu and PtReco [2019-02-17] MR CxAODReader: Update AnalysisReader.cxx to allow in period e use PTV slices at full weight [2019-02-17] MR CxAODOperations VHbb: Update submitReader.sh to run Znunu only in 0L, and differently for a.d.e [2019-02-16] MR CxAODOperations_VHbb: Update submitReader.sh to not run Znunu for 2L [2019-02-16] MR CxAODOperations_VHbb: Update submitReader.sh to use also Znunu_B slices also in period e of 1L and 2L [2019-02-15] MR CxAODReader_VHbb: update the dilepton event veto for tag32 stopWt samples in 2L reader [2019-02-14] MR CxAODOperations: Update XSections_13TeV.txt for Znunu PTV slices for B, C, L filtering; and rename stopWt_dilep to stopWt to allow for merging for stat extensions [2019-02-14] MR CxAODOperations: Add alternative ttbar Sherpa samples [2019-02-12] MR CxAODReader VHbb: Add a new variable in tagTrackjet selection function [2019-02-06] MR CxAODReader VHbb: Add ptv 250 GeV splitting. [2019-02-05] MR CxAODOperations_VHbb: Update submitReader.sh to fix bug for data and Znunu samples, change 1L e to use MET trigger again [2019-02-04] MR CxAODMaker: Moved Jvt to default list of stored variables for jets [2019-01-29] MR CxAODOperations_VHbb: Update submitReder.sh for 0L e to use the Z+jets pTV slices instead of max(HT,PTV) [2019-01-28] MR CxAODMaker: Adding possibility to use RNN taus & fixing Tau SF bug [2019-01-24] MR CxAODOperations VHbb: turn on the ttbar pTW filter extension for 1L [2019-01-19] MR CxAODBootstrap_VHbb: Bump AnalysisBase version to AB 21.2.60 [2019-01-15] MR CxAODTools: adding tau plus lep triggers for 2017 [2019-01-12] MR CxAODBootstrap_VHbb: Master abuzatu bump to AnalysisBase 21.2.59 and create compile.sh with has to be run by hand to compile after build is removed [2019-01-11] MR CxAODMaker: bug fix for newStyle truth regarding checkSherpaVZqqZbb func [2019-01-10] MR CxAODTools VHbb: Temporary Muon Isolation update [2019-01-10] MR CxAODMaker: Changed Isolation WP adding order in MuonHandler [2019-01-09] MR CxAODMaker: Add back IsoLooseTrackOnly in ElectronHandler 11 [2019-01-09] MR CxAODTools: Add back IsoLooseTrackOnly SFs for Electrons [2019-01-04] Tag r32-07

Expected signal eff.loss $25/27 \text{GeV} \rightarrow 30 \text{GeV}$

Expected signal efficiency loss, when the offline electron/muon threshold raised to 30 GeV

	Cannel ar	nd regions	WH yield			
Channel	Njet reg.	pTV reg.	Default, pTL>27GeV (>25GeV for muon in ptV>150GeV reg.)	pTL>30GeV	Eff. loss (%)	
	2tag2jet	75GeV <ptv<150gev< th=""><th>128.8±0.6</th><th>125.3±0.6</th><th>2.7</th></ptv<150gev<>	128.8±0.6	125.3±0.6	2.7	
	Ztugzjet	pTV>150GeV	91.2±0.2	90.4±0.2	0.9	
Electron	Itaalioto	75GeV <ptv<150gev< th=""><th>105.1±0.5</th><th>102. 5±0.5</th><th>2.5</th></ptv<150gev<>	105.1±0.5	102. 5±0.5	2.5	
	2tag3jets	pTV>150GeV	87.3±0.2	86.5±0.2	0.9	
	2tog 2iete	75GeV <ptv<150gev< th=""><th>149.8±0.6</th><th>145.3±0.6</th><th>3</th></ptv<150gev<>	149.8±0.6	145.3±0.6	3	
	2tag2jets	pTV>150GeV	107.8±0.2	105.4±0.2	2.3	
Muon	2tag3jets	75GeV <ptv<150gev< th=""><th>119.0±0.6</th><th>115.2±0.6</th><th>3.2</th></ptv<150gev<>	119.0±0.6	115.2±0.6	3.2	
	Ziugojeis	pTV>150GeV	101.3±0.2	98.9±0.2	2.3	
Electron	2tag 2iota	75GeV <ptv<150gev< th=""><th>278.6±0.9</th><th>270.6±0.9</th><th>2.9</th></ptv<150gev<>	278.6±0.9	270.6±0.9	2.9	
tiectron +	2tag2jets	pTV>150GeV	199.0±0.3	195. 8±0.3	1.6	
т Muon	2tory 2ints	75GeV <ptv<150gev< th=""><th>224.1±0.8</th><th>217.7±0.8</th><th>2.9</th></ptv<150gev<>	224.1±0.8	217.7±0.8	2.9	
WIGON	2tag3jets	pTV>150GeV	188.6±0.3	185.4±0.3	1.7	

Systematic uncertainties

Signal			Z + jets
Cross-section (scale) Cross-section (PDF) $H \rightarrow b\bar{b}$ branching fraction Acceptance from scale variations Acceptance from PS/UE variations for 2 or more jets Acceptance from PS/UE variations for 3 jets Acceptance from PDF+ $\alpha_{\rm S}$ variations $m_{bb}, p_{\rm T}^{\rm V}$, from scale variations $m_{bb}, p_{\rm T}^{\rm V}$, from PS/UE variations	$\begin{array}{c} 0.7\% \; (qq), 27\% \; (gg) \\ 1.9\% \; (qq \rightarrow WH), \ 1.6\% \; (qq \rightarrow ZH), 5\% \; (gg) \\ 1.7\% \\ 2.5 - 8.8\% \\ 2.9 - 6.2\% \; (depending \; on \; lepton \; channel) \\ 1.8 - 11\% \\ 0.5 - 1.3\% \\ & {\rm S} \\ & {\rm S} \end{array}$	$ \begin{array}{c} Z+ll \text{ normalisation} \\ Z+cl \text{ normalisation} \\ Z+HF \text{ normalisation} \\ Z+bc\text{-to-}Z+bb \text{ ratio} \\ Z+cc\text{-to-}Z+bb \text{ ratio} \\ Z+bl\text{-to-}Z+bb \text{ ratio} \\ 0\text{-to-}2 \text{ lepton ratio} \\ m_{bb}, p_{\mathrm{T}}^{V} \end{array} $	$\begin{array}{c} 18\% \\ 23\% \\ \text{Floating (2-jet, 3-jet)} \\ 30 - 40\% \\ 13 - 15\% \\ 20 - 25\% \\ 7\% \\ \text{S} \end{array}$
$m_{bb}, p_{\rm T}^V, \text{from PDF} + \alpha_{\rm S} \text{ variations}$	S		W + jets
$p_{\rm T}^V$ from NLO EW correction	S	W + ll normalisation W + cl normalisation W + HF normalisation W + bl-to- $W + bb$ ratio W + bc-to- $W + bh$ ratio	32% 37% Floating (2-jet, 3-jet) 26% (0-lepton) and 23% (1-lepton) 15% (0-lepton) and 30% (1-lepton)
ZZ Normalisation D-to-2 lepton ratio Acceptance from scale variations Acceptance from PS/UE variations for 2 or more jets		$ \begin{array}{l} W + bc \ \text{tor} W + bb \ \text{ratio} \\ W + cc \text{-to-} W + bb \ \text{ratio} \\ 0 \text{-to-1 lepton ratio} \\ W + \text{HF CR to SR ratio} \\ m_{bb}, p_{\text{T}}^V \end{array} $	$ \begin{array}{c} 10\% (0 \text{ lepton}) \text{ and } 30\% (1 \text{ lepton}) \\ 10\% (0 \text{-lepton}) \text{ and } 30\% (1 \text{-lepton}) \\ 5\% \\ 10\% (1 \text{-lepton}) \\ S \end{array} $
Acceptance from PS/UE variations for 3 jets V	7% (0-lepton), $3%$ (2-lepton)	$t\bar{t}$ (all are uncorrelated and the second secon	ated between the $0+1$ - and 2-lepton channels)
m_{bb}, p_{T}^{V} , from scale variations m_{bb}, p_{T}^{V} , from PS/UE variations m_{bb} , from matrix-element variations	S (correlated with WZ uncertainties) S (correlated with WZ uncertainties) S (correlated with WZ uncertainties)	$\frac{m_{bb}, p_{\rm T}^{V^{\rm T}}}{W + ll \text{ normalisation}}$ $W + ll \text{ normalisation}$ $W + \text{HF normalisation}$ $W + bl \text{-to-}W + bb \text{ ratio}$ $W + bc \text{-to-}W + bb \text{ ratio}$ $W + bc \text{-to-}W + bb \text{ ratio}$ $0 \text{-to-}1 \text{ lepton ratio}$ $W + \text{HF CR to SR ratio}$ $\frac{m_{bb}, p_{\rm T}^{V}}{t\bar{t}} \text{ (all are uncorrelat)}$	Floating (0+1-lepton, 2-lepton 2-jet, 2-lepton 3-jet) 8% 9% (0+1-lepton only)
WZ Normalisation	26%	W + HF CR to SR ratio	25% S
0-to-1 lepton ratio	11%		Single top-quark
Acceptance from scale variations Acceptance from PS/UE variations for 2 or more jet Acceptance from PS/UE variations for 3 jets $m_{bb}, p_{\rm T}^V$, from scale variations $m_{bb}, p_{\rm T}^V$, from PS/UE variations	11% S (correlated with ZZ uncertainties) S (correlated with ZZ uncertainties)	Acceptance 2-jet Acceptance 3-jet	$\begin{array}{c} 4.6\% \ (s\text{-channel}), \ 4.4\% \ (t\text{-channel}), \ 6.2\% \ (Wt) \\ 17\% \ (t\text{-channel}), \ 55\% \ (Wt(bb)), \ 24\% \ (Wt(other)) \\ 20\% \ (t\text{-channel}), \ 51\% \ (Wt(bb)), \ 21\% \ (Wt(other)) \\ & \mathrm{S} \ (t\text{-channel}, \ Wt(bb), \ Wt(other)) \end{array}$
m_{bb} , from matrix-element variations	S (correlated with ZZ uncertainties)		Multi-jet (1-lepton)
WW Normalisation	25%	Normalisation BDT template	$60-100\%~(ext{2-jet}),~90-140\%~(ext{3-jet}) \ ext{S}$

Modeling updates

✓ Complete migration from RIVET \rightarrow VHbbTruthFramework

(RIVET: Standalone C++. Independent of ATLAS software. mbb at reco formed by two b-tagged jets). TRUTH3 format now used in CxAODFramework, with complete Reco-to-Truth matching;

✓ Harmonisation of truth information between CxAODFramework ↔ VHbbTruthFramework.

✓ Utilising **filtered samples** from around ATLAS to decrease MC stat. uncertainty in VH:

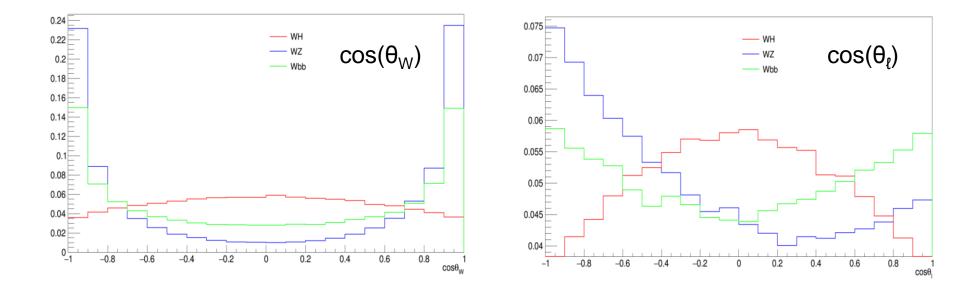
- ttbar SUSY MET filtered samples
- ttbar pWT filtered samples
- ✓ Investigation of **ttbar data-driven estimation** (2L).
- ✓ Mtop was not covered by pTV and mBB Systematics.
- \checkmark mBB and pTV systematics \rightarrow **BDT-based systematics**.
- ✓ BDT-reweighting approach:
 - -Alternative method of producing Monte Carlo based shape systematics.

-BDT to parameterize the differences in phase space between the nominal (Sherpa) and alternative (MadGraph) MC.

✓ Signal uncertainties - possible improvement on MC:

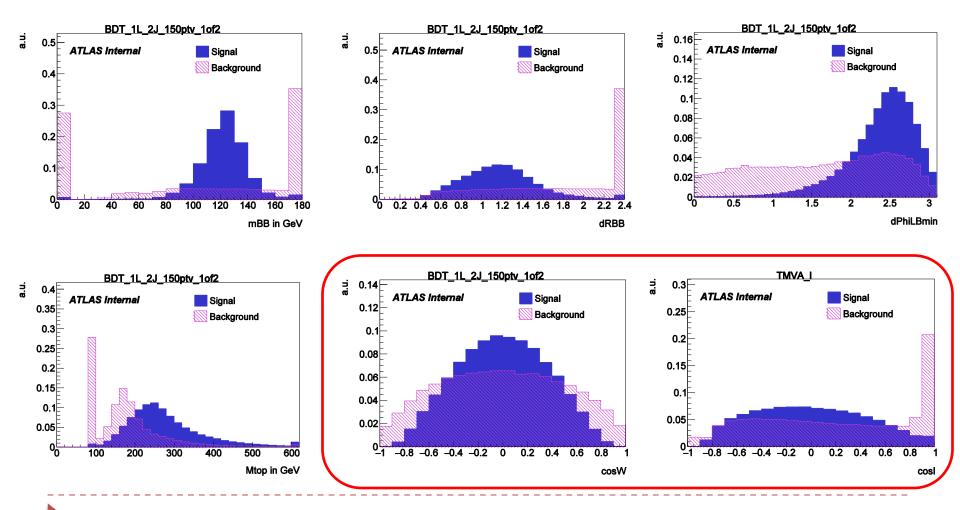
Cross section gg \rightarrow ZH, pp \rightarrow VH improve Powheg(MiNLO), Electroweak corrections.

Statistical analysis

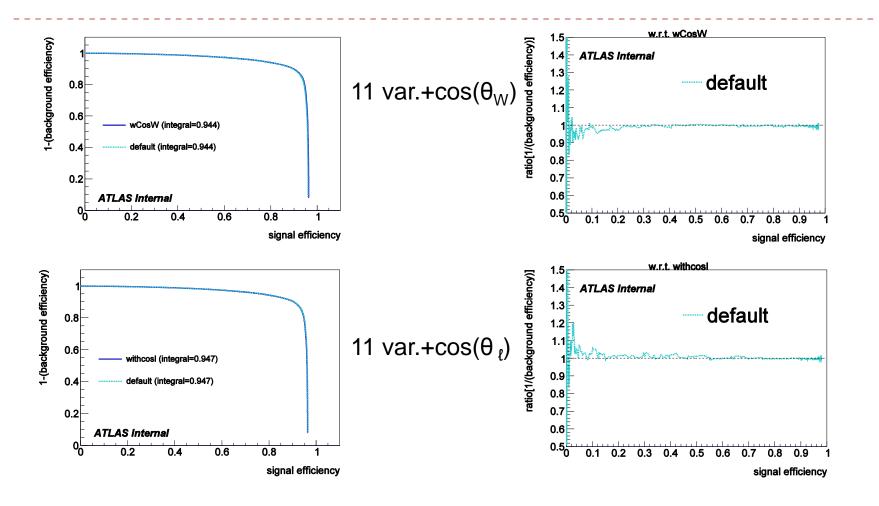

- *Multivariate analysis (MVA)* for main results
- **Cut-flow analysis** for cross-check
- **Diboson analysis** for cross-check

Multivariate analysis

Variable	$0 ext{-lepton}$	$1 ext{-lepton}$	2-lepton	Process	$\sigma \times \mathcal{B}$ [fb]	A	cceptance [%]
p_{T}^{V}	$\equiv E_{\rm T}^{\rm miss}$	×	×	1 100035	$0 \times D$ [ID]	0-lepton	1-lepton	2-lepton
$E_{\mathrm{T}}^{\mathrm{miss}}$	×	×		$qq \to ZH \to \ell\ell b\bar{b}$	29.9	< 0.1	0.1	6.0
$p_{\mathrm{T}}^{b_1^-}$	×	×	×	$gg \to ZH \to \ell \ell b \bar{b}_{-}$	4.8	< 0.1	0.2	13.5
$p_{\mathrm{T}}^{b_1} \ p_{\mathrm{T}}^{b_2}$	×	×	×	$qq \to WH \to \ell \nu b\bar{b}$	269.0	0.2	1.0	—
m_{bb}	×	×	×	$\begin{array}{c} qq \rightarrow ZH \rightarrow \nu\nu b\bar{b} \\ gq \rightarrow ZH \rightarrow \nu\nu b\bar{b} \end{array}$	$89.1 \\ 14.3$	$\begin{array}{c} 1.9\\ 3.5\end{array}$	_	_
$\Delta R(\vec{b_1}, \vec{b_2})$	×	×	×	<i>99 7 211 7 7 7 7 0</i> 00	14.0	0.0		
$ \Delta\eta(\vec{b_1},\vec{b_2}) $	×							
$\Delta \phi(ec{V}, bec{b})$	×	×	×	Process		Normali	sation fa	actor
$ \Delta \eta (ec V, ec b ec b) $			×	$t\overline{t}$ 0- and 1-	-lepton	0.9	8 ± 0.08	
$m_{ m eff}$	×			$t\bar{t}$ 2-lepton	1		6 ± 0.09	
$\min[\Delta \phi(ec{\ell},ec{b})]$		×		1	0			
m_{T}^W		×		$t\bar{t}$ 2-lepton	-		5 ± 0.06	
$m_{\ell\ell}$			×	W + HF 2-	·jet	1.1	9 ± 0.12	
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{S_{\mathrm{T}}}$			×	W + HF 3-	jet	1.0	5 ± 0.12	
$m_{\rm top}$		×		Z + HF 2-	iet	1.3	7 ± 0.11	
$ \Delta Y(\vec{V}, \vec{bb}) $		×		Z + HF 3-j	\mathbf{et}	1.0	9 ± 0.09	
	Only	y in 3-jet ev	vents					
$p_{ m T}^{ m jet_3}$	×	×	×					
m_{bbj}	×	×	×	Pseudo-con	tinuous	b-taggin	ng (j1 &	j2)
Addition of	Z polariz	ation var	riables in	2 lepton +7% or	ı 2-lep fi	t signifi	cance	


Angular variables

Generator level distributions



Check the new variables in MVA

BDT input variables

BDT output, ROC comparison

S/sqrt(S+B)=**28.1564** default, S/sqrt(S+B)=**28.1636** default + $cos(\theta_l)$, and S/sqrt(S+B)=**28.1622** default + $cos(\theta_W)$

Other activities

CxAOD production and validations ($xAOD \rightarrow DxAOD \rightarrow CxAOD$).

- CxAODFramework validation
 - CxAOD Maker, CxAOD Maker_VHbb
 - CxAOD Reader, CxAOD Reader_VHbb
- DxAOD validation
 - r31-10 and r32-02
- CxAOD validation
 - CxAOD_r31-10 (ICHEP)
 - CxAOD_r32-02
 - CxAOD_r32-06
 - CxAOD_r32-07
 - CxAOD_r32-15
- EMTopo and Particle Flow jet comparison
- Signal efficiency checks (different cuts)
- Angular variables for 1lepton MVA.

Conclusion

✓ Over the past few months, many improvements have been included in the analysis;

- ✓ Medium p_T^V bin in 1-lepton: 75 < p_T^V < 150 GeV, Split at 250 GeV;
- ✓ Pseudo-continuous b-tagging and BDTr;
- ✓ Data driven top in 2lep; Redefinition of SRs and CRs (all channels);
- ✓ Including polarization variables as BDT input (2L-channel);
- \checkmark MVA re-training: decision was taken on the best setup;
- ✓ Optimisation and validation will continue;

Plan before the end of the year:

- ✓To complete the analysis of full Run 2 data (140 fb⁻¹),
- ✓ Improve VH, $H \rightarrow bb$ measurement (cross-section, µ ...),
- \checkmark Observation separately VH(bb) and ZH(bb) (expected >5 σ for ZH alone).

✓ A full Run2 paper by Moriond 2020 (JHEP).

Thank You!