ON DEEP LEARNING FOR OPTION PRICING

IN LOCAL VOLATILITY MODELS

Shorokhov Sergey

"Distributed Computing and Grid-technologies
in Science and Education"

July 5-9 Dubna

i@.ﬁ, RUDN
pp university

GRID’2021 July 5-9 Dubna



CONTENTS -[%

o Option pricing in finance
o Local volatility models
o Option pricing with Deep Galerkin Method (DGM)

o Computer experiments with deep option pricing in local
volatility models

ov Sergey (RUDN University) On Deep Learning for Option Pricing... GRID’2021 July 5-9 Dubna 2 ) &3



Options in Finance -Ea

Option is a financial instrument (contract) with the right, but not the obligation,
of the holder (buyer) to buy or sell an underlying asset at a specified strike price
on a specified date in the future.

Payoff functions of European call and put options at time T are equal to

cg (T) = max (St — K, 0), pg (T) = max (K — S, 0)

Buy call Buy put

The problem of determination of the fair price of options at t < T remained
unsolved for a long time.
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Black-Scholes Stochastic M -[%

In Black-Scholes model (BS model) the price of the underlying asset is driven
by SDE

d
gzudt+UdW,S(to):So>O,

where

e S(t) is the underlying asset price at time t
@ 4 is constant instanteneous return of the asset
@ o is constant volatility

e W is a standard Wiener process

BS model is a continuous time constant volatility model.
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Black-Scholes-Merton PDE -[%

In 1973 F. Black, M. Scholes and independently R. Merton proved, that in
lognormal (BS) model the fair price u = u (S, t) of any derivative is a solution
to partial differential equation (PDE)

du ou 1 ,_,0% B

with appropriate boundary conditions, r is a risk free rate.

For a European call option the boundary (terminal) condition is
u(S,T) = max(S — K, 0),

where K is the strike-price, T is the time to maturity.
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Black-Scholes Formula -[%

F. Black and M. Scholes obtained the following exact formula for the price of a
European call option with strike-price K and maturity T:

u(S,t, K, T)=S&(d,.)-Ke T V®(d_),
I (§)+(re5) (T4
d:I: = )
oVT —1t

d
1 x2
@(d) = \/727 / e 2 d)(7

S>0,tcl0,T).
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Local Volatility Model and PDE for Derivative Price

Under risk-neutral pricing SDE of a local volatility model is

ds
g =rdt+o(S.t) dW, S (to) = So > 0,

where

S (t) is the asset price at time t

o r > 0 is risk free interest rate

o (S,t) is a volatility function

o W is a standard Wiener process
Black-Scholes-Merton PDE (for European call option price ¢ (S,t, K, T)) is

de de 1 4 5, 0%c B
a‘}’rS%‘i’EO’ (S,t)S —— —rc=20

with boundary (terminal) condition

c(S,T,K,T) = max(S — K, 0).
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Shifted Lognormal Model

o Shifted lognormal model (D.Brigo, F.Mercurio, 2000) is quite close to
Black-Scholes model:

dS=rSdt+o (S—ae") dW, S(tg) =So > ae"™

e In shifted lognormal model the asset price is may be negative for a < 0.

@ In shifted lognormal model European call option price is equal to
c(S.t, K. T) = (S—ae™) &(dy) — (K—ae"T)e ™ T Ya(d),

1n<1§%2:;)+(r:|:§) (T —t)

d =
* ovT —t
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Normal (Ornstein—Uhlenbeck) Model

Generally, Ornstein—Uhlenbeck model (G.Uhlenbeck, L.Ornstein, 1930) is

the model with mean reversion behaviour
dx =6 (m—x)dt +ocdW.
e Normal model can be derived from Ornstein-Uhlenbeck model:
dS=rSdt+ocdW, S(tg) =Sp >0

e In normal model the price of underlying asset S (t) can be negative.

In normal model European call option price is equal to
L\2
ove2r(T-t) _1 o r(T 1) (d;r)
2\/7r ’

e"T-Y5 — K
ove2r(T-t) _ 1

¢ (St K, T)= (S—Ke "™) & (a} )+

d} =v2r
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CEV (Constant Elas

e CEV model was introduced by J. Cox, S.Ross (1976)
dS =rSdt+ocS?2dwW, 3 +# 2.

o In CEV model asset price is positive and noncentral chi-square distributed.

e In CEV model (8 > 2) European call option price is equal to

2 2
K, T)= 2x:—— 2y | —Ke "T-t(1-Q(2y:2+—-——— 2
C(S?t? ) ) SQ<X7/82) y) e ( Q(y7 +ﬂ727 X>>7
2r
02 (2 — B) (ex@-A (Tt 1)’

Q is a complementary distribution function of noncentral chi-square distri-
bution.

x = k*S2 Per@=AT=t) 'y — K27 k=
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Hyperbolic Sine Model

e In hyperbolic sine model (S.Shorokhov, M. Fomin, 2020) asset price is
driven by SDE

dS=rSdt++v2rS2+X2dW,r >0, A > 0.

o In hyperbolic sine model asset price may be negative.

@ In hyperbolic sine model European call option price is equal to

c(S,t,K,T):%S(Q( 2r(T—6) - K*) + & (/2 (T 1) - K") ) +
41 Af:+sz(<1>( 2r(T—t)—K*)—<I>(—\/m—K*>)—

2V 2
arsinh (‘/ﬁK) — arsinh <@s>

A A

—e_r(T_t)KtID (_K*) , K* =
2r (T —t)
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Deep Learning and PDE -[%

Deep learning is a family of machine learning methods based on artificial neural
networks.

Mathematically, an artificial neural network is a directed graph with vertices
representing neurons and edges representing links and with input to each neuron
being a function of a weighted sum of the output of all neurons that are
connected to its incoming edges

£(x:0) = Ya (i (U1 (%)), v (%) = o (w0 x4+ b))

Here, each layer of the network is represented by a function 5, incorporating
the weighted sums of previous inputs and activations to connected outputs. The
number of layers d is referred to as the depth of the neural network and the
number of neurons in a layer represents the width of that particular layer.

The goal of deep learning is to find the parameter set 8 = {w(i), b(i)}id:1 that
minimizes the loss function L(#), which determines the performance of a given
parameter set 6.
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Deep Galerkin Method (DGM) -[%

DGM algorithm was introduced by J.Sirignano, K.Spiliopoulos (2018) in article
«DGM: A deep learning algorithm for solving partial differential equations» in
Journal of Computational Physics, vol.375, pp.1339-1364.

In DGM algorithm PDE solution is approximated with a deep neural network
which is trained to satisfy the differential operator and initial/boundary condi-
tions. The following PDE were considered:

@ high-dimensional free boundary PDE (American option pricing)
e High-dimensional Hamilton-Jacobi-Bellman PDE
e Burgers’ PDE

Computations were performed using the Blue Waters supercomputer at the
National Center for Supercomputing Applications (NCSA) at the University of
Illinois at Urbana-Champaign (https://bluewaters.ncsa.illinois.edu).
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Deep Option Pricing in LVM with DGM

The unknown European call option price u (t, S), determined in the domain
[0, T] x ©, Q@ = [s1,sn] C R, is a solution to the following boundary problem

—|— Sau+10'2(t S)S2W_I'U—Oa (tv 8)6[07 T]XQ
(T, S) = max (S - K, 0), Seq

The function u (t,S) is approximated with a deep neural network f (t,S;80),
where 6 are the neural network’s parameters. The loss function (error) is

2 2
o2 (t, S)Szﬂ —rf

S? +

= Si
0= |5 + 1595+ 3

[O,T]XQ,V]_
+[If — max (S — K, 0)[[,,,

where ||f||§(’p = JxIf (¥)I? p (y)dy, p(y) is a positive probability density on X.

The goal is to find a set of parameters 6 such that the function f (t,S;6)
minimizes the loss function (error) L (f).

Shorokhov (RUDN University) On Deep Learning for Option Pricing... GRID’2021 July 5-9 Dubna 14 /33



DGM Algorithm for Option Pricing in LVM -[%

DGM is using a neural network of special architecture and stochastic gradient
descent on a sequence of time and price points drawn at random from [0, T] x Q.

© Choose initial parameter set 8y and learning rate aqg

@ Generate random points (ty, S,) from [0, T] x © with distribution v4 and
S;l from € with distribution vs.

@ Calculate the loss function (error) L (6n,&n) at the randomly sampled

points &, = {(th ),S. } where:

L (0n,&n) = (‘”“"’S"’Q ) S, lnSuiba) | 152 (4§ ) §2 0 F(tnSuith)
—rf(tn, Sp; Gn)) +(f (tn, Sn;bn) — max (S, — K, 0))

@ Take a gradient descent step at the random point &, with adaptive algorythm
Adam for the learning rate ay:

9n+1 - Gn - anVOL (ena gn)

@ Repeat steps 2-4 until convergence criterion ||0n41 — || < € is satisfied.
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Architecture of DGM Neural Network [%

The architecture of DGM neural network is similar to LSTM and Highway

Networks. It consists of three types of layers: an input layer, hidden (LSTM)
layers and an output layer.

Input layer Hidden layers Output layer

x — wox+by o X s ([ Xq - wXa+b —[ ¥

N e

Each LSTM layer takes as an input the original mini-batch inputs x = (t,S)
(the set of randomly sampled time-price points) and the output of the previous
LSTM layer. The process results in an output y which consists of the neural

network approximation of the desired option price u evaluated at the mini-batch
points.
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Calculations in DGM Ne

In the input layer, the original inputs x are transformed into the output Xg
Xo =0 (Wox + bo)
with a nonlinear activation function o and input layer parameters wgo and bg.

In LSTM layers, the original inputs x along with the output of the previous
layer X;_; are transformed through a series of operations:

Z; =0 (ulz X + le X1+ blz) , Gi=0 (ulg X + ng Xi_ 1+ blg) s

Ri =0 (u x4+ wi Xi_1 +b}), H; =0 (ux+w} (Xi_1 ©R;) +b}),

where ® denotes element-wise multiplication, u?, w?, b? uf, wf, bf, ul, wi, bf,

u?, W?, b? are LSTM layer parameters, and the outputs of LSTM layer are
Xi=1-Gi)oH; +Z; 0 X;_1.

In the output layer, the outputs of the last LSTM layer X4 are transformed

into the neural network outputs y via a linear transform

y=f(x0)=wXq+b

where w’ and b’ are the output layer parameters.
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Architecture of LSTM la

Each LSTM layer contains 8 weight matrices and 4 bias vectors:

\

"

/

/) %
X1 g—w\ u%‘erWih (Xi-1 O Ry) +bih LN ‘ —

A 4
y uf x+wi X;_1 + b} *>‘
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Parameter Set of DGM Neural Network -[%

Let d be the number of hidden layers and N be the number of neurons (nodes)
in each hidden layer of DGM Network.

In the input layer, the weight parameter wg is of shape 2 x N and the bias
parameter bg is of shape 1 x N.

h-are of shape 2 x N, the

are of shape N x N, the bias parameters

In LSTM layers, the weight parameters uiz,uig,uf,u

weight parameters w? wf, wi wh

b?, bf, bY, b are of shape 1 x N.

In the output layer, the parameter w’ is of shape N x 1 and b’ is a scalar
parameter.

So the total number of parameters in DGM network is equal to

0] =3N+d (8N+4N2+4N) +N+1=4d (N+1)* +4N+1

In experiments we will use 3 hidden layers and 50 neurons per hidden layer and
the number of parameters will be 31 413.
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Let the underlying asset price be driven by SDE of HS model:

dS=rSdt++v2rS2+X2dW,r >0, A > 0.
BSM PDE for HS model is

ou ou 1 0%u

L(u) = — S— +=(2rS?2+2)2%) — — =0.
(w) =5 +r85g + 5 287+ V) 5 —ru

The goal is to find a NN estimate of a European option price and compare it

with known exact closed form price formula.
The computational experiments are performed with the following parameters:

@ The number of hidden layers is 3 (d = 3)
e The number of nodes (neurons) per hidden layer is 50 (N = 50)
e Number of training stages is 100 with 10 SGD steps in each stage
or =005 \=025
NN approximation for HS model is implemented with TensorFlow framework.

Computations are performed using MacBook Pro with Intel Core i9 processor
(I9-9880H, 8 cores) and discrete graphics card AMD Radeon Pro 5500M (1536
shader processors).
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Case #1

e Inputs are price-time points (S,t), S € (0,2K), t € (0, T)
Strike price K and expiration time T are fixed (K = 50, T = 1)

Loss function:

2
L (w) = [L(0)[lfp 7jxq2,, + [[u —max (S~ K,0)[g,,

o Implementation: TensorFlow 1.15
Training time 131s
o MSE 0.1858
MAE 0.2310
R? 99.93%
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Case #1 — Loss Function Implementation

# Loss function for BSM PDE in HS model
def loss(model, t_int, S_int, t_term, S_term):
''' Compute total loss for training.

Args:
model: DGM model object
t_int: sampled time points in the interior of the option price domain
S_int: sampled price points in the interior of the option price domain
t_term: sampled time points at terminal point (vector of terminal times)
S_term: sampled price points at terminal time

# Loss term #1: PDE

# option price value and derivatives at sampled points

model(t_int, S_int)

tf.gradients(V, t_int) [0]

tf.gradients(V, S_int) [0]

tf.gradients(V_s, S_int)[0]

VM model dependent code

f_V = V_t + 0.5%(lamb*x2+2.%r*S_int**2)*V_ss + r*S_int*V_s - rxV

v =
V.t =
V_s =
V_ss =
# L
dif

# average L2-norm of differential operator

L1 = tf.reduce_mean(tf.square(diff_V))

# Loss term #2: terminal condition

target_payoff = tf.nn.relu(S_term - K)

fitted_payoff = model(t_term, S_term)

L2 = tf.reduce_mean( tf.square(fitted_payoff - target_payoff) )

return L1 + L2
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— Exact and Predicted Option Price
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Case #2 -Ea

Inputs are price-time-strike price-expiration time points (S, t, K, T),
S S (07 2Kmax)7 te (OaTmax)y K S (OaKmax)y T S (tmiax)
° Kmax = 507 Thax =1

Loss function:

L (w) = [£(w)]* + |lu — max (S - K, 0)||?

o Implementation: TensorFlow 2.4.1
Training time 167 s
. MSE 14.2007
MAE 02.7177
R? 94.90%
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Inputs are price-time-strike price-expiration time points (S, t, K, T),
S € (Oa 2Kmax)7 te (03 Tmax)a K S (07Kmax)a T S (t, Tmax)
° Kmax = 507 Tmax =1

Loss function:

L (w) = [£)]* + 1€ (@)]* + [u — max (S — K, 0)|%,

Ou ou 1 0%u
L (u) = a—TJrrKa—K —3 (2rK? + \?) K2
@ Implementation: TensorFlow 2.4.1
Training time 310 s
. MSE 35.8328
MAE 5.3346
R? 86.06%
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Case — #3 Neural Network Training
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Case #3 — 3-d Surface of Absolute Error
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