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Options in Finance

Option is a financial instrument (contract) with the right, but not the obligation,
of the holder (buyer) to buy or sell an underlying asset at a specified strike price
on a specified date in the future.

Payoff functions of European call and put options at time T are equal to

cE (T) = max (ST − K,0) , pE (T) = max (K − ST,0)

Buy call Buy put

The problem of determination of the fair price of options at t < T remained
unsolved for a long time.
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Black-Scholes Stochastic Model

In Black-Scholes model (BS model) the price of the underlying asset is driven
by SDE

dS
S = µdt + σ dW, S (t0) = S0 > 0,

where

S (t) is the underlying asset price at time t
µ is constant instanteneous return of the asset
σ is constant volatility
W is a standard Wiener process

BS model is a continuous time constant volatility model.
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Black-Scholes-Merton PDE

In 1973 F. Black, M. Scholes and independently R. Merton proved, that in
lognormal (BS) model the fair price u = u (S, t) of any derivative is a solution
to partial differential equation (PDE)

∂u
∂t + r S ∂u

∂S + 1
2σ

2 S2 ∂
2u
∂S2 − r u = 0, S > 0, t ∈ [0, T]

with appropriate boundary conditions, r is a risk free rate.

For a European call option the boundary (terminal) condition is

u(S,T) = max(S − K, 0),

where K is the strike-price, T is the time to maturity.
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Black-Scholes Formula

F. Black and M. Scholes obtained the following exact formula for the price of a
European call option with strike-price K and maturity T:

u(S, t,K,T) = S Φ(d+) − K e−r (T−t) Φ(d−),

d± =
ln

( S
K

)
+

(
r ± σ2

2

)
(T − t)

σ
√

T − t
,

Φ(d) = 1√
2π

d∫
−∞

e− x2
2 dx,

S > 0, t ∈ [0,T].
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Local Volatility Model and PDE for Derivative Price
Under risk-neutral pricing SDE of a local volatility model is

dS
S = r dt + σ (S, t) dW, S (t0) = S0 > 0,

where

S (t) is the asset price at time t
r > 0 is risk free interest rate
σ (S, t) is a volatility function
W is a standard Wiener process

Black-Scholes-Merton PDE (for European call option price c (S, t,K,T)) is

∂c
∂t + r S ∂c

∂S + 1
2σ

2 (S, t) S2 ∂
2c
∂S2 − r c = 0

with boundary (terminal) condition

c (S,T,K,T) = max(S − K, 0).
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Shifted Lognormal Model

Shifted lognormal model (D. Brigo, F.Mercurio, 2000) is quite close to
Black-Scholes model:

dS = r S dt + σ
(
S − α er t)

dW, S (t0) = S0 > α er t0

In shifted lognormal model the asset price is may be negative for α < 0.
In shifted lognormal model European call option price is equal to

c (S, t,K,T) =
(
S − α er t)

Φ(d+) −
(
K − α er T)

e−r(T−t)Φ(d−),

d± =
ln

(
S−α er t

K−α er T

)
+

(
r ± σ2

2

)
(T − t)

σ
√

T − t
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Normal (Ornstein–Uhlenbeck) Model

Generally, Ornstein–Uhlenbeck model (G.Uhlenbeck, L.Ornstein, 1930) is
the model with mean reversion behaviour

dx = θ (m − x) dt + σ dW.

Normal model can be derived from Ornstein–Uhlenbeck model:

dS = r S dt + σ dW, S (t0) = S0 > 0

In normal model the price of underlying asset S (t) can be negative.
In normal model European call option price is equal to

c (S, t,K,T)=
(
S−Ke−r(T−t)

)
Φ

(
d∗

+
)
+ σ

√
e2r(T−t)−1

2
√
πr

e−r(T−t)e−
(d∗

+)2

2 ,

d∗
+ =

√
2r er(T−t)S − K
σ

√
e2r(T−t) − 1
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CEV (Constant Elasticity of Variance) Model

CEV model was introduced by J.Cox, S. Ross (1976)

dS = r S dt + σ Sβ/2 dW, β ̸= 2.

In CEV model asset price is positive and noncentral chi-square distributed.
In CEV model (β > 2) European call option price is equal to

c (S, t,K,T)=S Q
(

2x; 2
β−2 ,2y

)
−Ke−r(T−t)

(
1−Q

(
2y;2+ 2

β−2 ,2x
))

,

x = k∗S2−βer(2−β)(T−t), y = k∗K2−β , k∗ = 2r
σ2 (2 − β)

(
er(2−β)(T−t) − 1

) ,
Q is a complementary distribution function of noncentral chi-square distri-
bution.
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Hyperbolic Sine Model

In hyperbolic sine model (S. Shorokhov, M. Fomin, 2020) asset price is
driven by SDE

dS = r S dt +
√

2 r S2 + λ2 dW, r > 0, λ > 0.

In hyperbolic sine model asset price may be negative.
In hyperbolic sine model European call option price is equal to

c (S, t,K,T)= 1
2S

(
Φ

(√
2r (T − t) − K∗

)
+ Φ

(
−

√
2r (T − t) − K∗

))
+

+1
2

√
λ2

2r +S2
(

Φ
(√

2r (T − t) − K∗
)

−Φ
(

−
√

2r (T − t) − K∗
))

−

−e−r(T−t)KΦ (−K∗) , K∗ =
arsinh

( √
2r
λ K

)
− arsinh

( √
2r
λ S

)
√

2r (T − t)
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Deep Learning and PDE
Deep learning is a family of machine learning methods based on artificial neural
networks.

Mathematically, an artificial neural network is a directed graph with vertices
representing neurons and edges representing links and with input to each neuron
being a function of a weighted sum of the output of all neurons that are
connected to its incoming edges

f (x; θ) = ψd (...ψ2 (ψ1 (x))) , ψi (x) = σ
(

w(i) x + b(i)
)

Here, each layer of the network is represented by a function ψi, incorporating
the weighted sums of previous inputs and activations to connected outputs. The
number of layers d is referred to as the depth of the neural network and the
number of neurons in a layer represents the width of that particular layer.

The goal of deep learning is to find the parameter set θ =
{

w(i),b(i)}d
i=1 that

minimizes the loss function L(θ), which determines the performance of a given
parameter set θ.
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Deep Galerkin Method (DGM)

DGM algorithm was introduced by J.Sirignano, K.Spiliopoulos (2018) in article
«DGM: A deep learning algorithm for solving partial differential equations» in
Journal of Computational Physics, vol.375, pp.1339-1364.

In DGM algorithm PDE solution is approximated with a deep neural network
which is trained to satisfy the differential operator and initial/boundary condi-
tions. The following PDE were considered:

high-dimensional free boundary PDE (American option pricing)
High-dimensional Hamilton-Jacobi-Bellman PDE
Burgers’ PDE

Computations were performed using the Blue Waters supercomputer at the
National Center for Supercomputing Applications (NCSA) at the University of
Illinois at Urbana-Champaign (https://bluewaters.ncsa.illinois.edu).
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Deep Option Pricing in LVM with DGM
The unknown European call option price u (t, S), determined in the domain
[0, T] × Ω, Ω = [sl, sh] ⊂ R, is a solution to the following boundary problem{

∂u
∂t + rS ∂u

∂S + 1
2σ

2 (t,S) S2 ∂2u
∂S2 − ru = 0, (t, S) ∈ [0, T] × Ω

u (T, S) = max (S − K, 0), S ∈ Ω

The function u (t,S) is approximated with a deep neural network f (t,S; θ),
where θ are the neural network’s parameters. The loss function (error) is

L (f) =
∥∥∥∥∂f
∂t + rS ∂f

∂S + 1
2σ

2 (t,S) S2 ∂
2f

∂S2 − rf
∥∥∥∥2

[0,T]×Ω,ν1

+

+ ∥f − max (S − K,0)∥2
Ω,ν2

,

where ∥f∥2
X,ρ =

∫
X |f (y)|2 ρ (y) dy, ρ (y) is a positive probability density on X.

The goal is to find a set of parameters θ such that the function f (t,S; θ)
minimizes the loss function (error) L (f).
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DGM Algorithm for Option Pricing in LVM
DGM is using a neural network of special architecture and stochastic gradient
descent on a sequence of time and price points drawn at random from [0,T] × Ω.

1 Choose initial parameter set θ0 and learning rate α0
2 Generate random points (tn,Sn) from [0,T] × Ω with distribution ν1 and

S′

n from Ω with distribution ν2.
3 Calculate the loss function (error) L (θn, ξn) at the randomly sampled

points ξn =
{

(tn,Sn) ,S′

n

}
, where:

L (θn, ξn)=
(

∂f(tn,Sn;θn)
∂t +rSn

∂f(tn,Sn;θn)
∂S + 1

2σ
2 (tn,Sn) S2

n
∂2f(tn,Sn;θn)

∂S2 −
− r f (tn,Sn; θn))2 + (f (tn,Sn; θn) − max (Sn − K,0))2

4 Take a gradient descent step at the random point ξn with adaptive algorythm
Adam for the learning rate αn:

θn+1 = θn − αn∇θL (θn, ξn)
5 Repeat steps 2-4 until convergence criterion ∥θn+1 − θn∥ < ϵ is satisfied.
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Architecture of DGM Neural Network

The architecture of DGM neural network is similar to LSTM and Highway
Networks. It consists of three types of layers: an input layer, hidden (LSTM)
layers and an output layer.
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The original version of the Kolmogorov-Arnold representation theorem states that for any continuous
function f : [0, 1]

d ! R, there exist univariate continuous functions gq ,  p,q such that

f (x1, ..., xd) =
2dX

q=0

gq

 
dX

p=1

 p,q (xp)

!
.

This means that the (2d + 1)(d + 1) univariate functions gq and  p,q are enough for an exact representation
of a d-variate function. Kolmogorov published the result in 1957 disproving the statement of Hilbert’s 13th
problem that is concerned with the solution of algebraic equations. The earliest proposals in the literature

1

Each LSTM layer takes as an input the original mini-batch inputs x = (t,S)
(the set of randomly sampled time-price points) and the output of the previous
LSTM layer. The process results in an output y which consists of the neural
network approximation of the desired option price u evaluated at the mini-batch
points.
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Calculations in DGM Network Layers
In the input layer, the original inputs x are transformed into the output X0

X0 = σ (w0 x + b0)
with a nonlinear activation function σ and input layer parameters w0 and b0.

In LSTM layers, the original inputs x along with the output of the previous
layer Xi−1 are transformed through a series of operations:

Zi =σ (uz
i x + wz

i Xi−1 + bz
i ) ,

Ri =σ (ur
i x + wr

i Xi−1 + br
i ) ,

Gi =σ
(
ug

i x + wg
i Xi−1 + bg

i
)
,

Hi =σ
(
uh

i x + wh
i (Xi−1 ⊙ Ri) + bh

i
)
,

where ⊙ denotes element-wise multiplication, uz
i ,wz

i ,bz
i ,u

g
i ,w

g
i ,b

g
i ,ur

i ,wr
i ,br

i ,
uh

i ,wh
i ,bh

i are LSTM layer parameters, and the outputs of LSTM layer are

Xi = (1 − Gi) ⊙ Hi + Zi ⊙ Xi−1.

In the output layer, the outputs of the last LSTM layer Xd are transformed
into the neural network outputs y via a linear transform

y = f (x; θ) = w′ Xd + b′,

where w′ and b′ are the output layer parameters.

Shorokhov Sergey (RUDN University) On Deep Learning for Option Pricing... GRID’2021 July 5-9 Dubna 17 / 33



Architecture of LSTM layer

Each LSTM layer contains 8 weight matrices and 4 bias vectors:
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f (x1, ..., xd) =
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!
.

This means that the (2d + 1)(d + 1) univariate functions gq and  p,q are enough for an exact representation
of a d-variate function. Kolmogorov published the result in 1957 disproving the statement of Hilbert’s 13th
problem that is concerned with the solution of algebraic equations. The earliest proposals in the literature

1
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Parameter Set of DGM Neural Network

Let d be the number of hidden layers and N be the number of neurons (nodes)
in each hidden layer of DGM Network.

In the input layer, the weight parameter w0 is of shape 2 × N and the bias
parameter b0 is of shape 1 × N.

In LSTM layers, the weight parameters uz
i ,u

g
i ,ur

i ,uh
i are of shape 2 × N, the

weight parameters wz
i ,w

g
i ,wr

i ,wh
i are of shape N × N, the bias parameters

bz
i ,b

g
i ,br

i ,bh
i are of shape 1 × N.

In the output layer, the parameter w′ is of shape N × 1 and b′ is a scalar
parameter.

So the total number of parameters in DGM network is equal to

|θ| = 3 N + d
(
8 N + 4 N2 + 4 N

)
+ N + 1 = 4 d (N + 1)2 + 4 N + 1

In experiments we will use 3 hidden layers and 50 neurons per hidden layer and
the number of parameters will be 31 413.
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NN Approximation of Option Price in HS Model
Let the underlying asset price be driven by SDE of HS model:

dS = r S dt +
√

2 r S2 + λ2 dW, r > 0, λ > 0.
BSM PDE for HS model is

L(u) ≡ ∂u
∂t + r S ∂u

∂S + 1
2

(
2 r S2 + λ2) ∂2u

∂S2 − r u = 0.

The goal is to find a NN estimate of a European option price and compare it
with known exact closed form price formula.

The computational experiments are performed with the following parameters:

The number of hidden layers is 3 (d = 3)
The number of nodes (neurons) per hidden layer is 50 (N = 50)
Number of training stages is 100 with 10 SGD steps in each stage
r = 0.05, λ = 0.25

NN approximation for HS model is implemented with TensorFlow framework.

Computations are performed using MacBook Pro with Intel Core i9 processor
(I9-9880H, 8 cores) and discrete graphics card AMD Radeon Pro 5500M (1536
shader processors).
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Case #1

Inputs are price-time points (S, t), S ∈ (0,2K), t ∈ (0,T)
Strike price K and expiration time T are fixed (K = 50, T = 1)
Loss function:

L (u) = ∥L(u)∥2
[0,T]×Ω,ν1

+ ∥u − max (S − K,0)∥2
Ω,ν2

Implementation: TensorFlow 1.15
Training time 131 s

MSE 0.1858
MAE 0.2310
R2 99.93%
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Case #1 – Loss Function Implementation
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Case #1 – Neural Network Training
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Case #1 – Exact and Predicted Option Prices
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Case #1 – 3-d Surface of Absolute Error
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Case #2

Inputs are price-time-strike price-expiration time points (S, t,K,T),
S ∈ (0,2Kmax), t ∈ (0,Tmax), K ∈ (0,Kmax), T ∈ (t,Tmax)
Kmax = 50, Tmax = 1
Loss function:

L (u) = ∥L(u)∥2 + ∥u − max (S − K,0)∥2

Implementation: TensorFlow 2.4.1
Training time 167 s

MSE 14.2007
MAE 02.7177
R2 94.90%
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Case #2 – Neural Network Training
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Case #2 – Exact and Predicted Option Prices
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Case #2 – 3-d Surface of Absolute Error
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Case #3

Inputs are price-time-strike price-expiration time points (S, t,K,T),
S ∈ (0,2Kmax), t ∈ (0,Tmax), K ∈ (0,Kmax), T ∈ (t,Tmax)
Kmax = 50, Tmax = 1
Loss function:

L (u) = ∥L(u)∥2 + ∥L∗ (u)∥2 + ∥u − max (S − K,0)∥2
,

L∗ (u) ≡ ∂u
∂T + r K ∂u

∂K − 1
2

(
2 r K2 + λ2) ∂2u

∂K2 .

Implementation: TensorFlow 2.4.1
Training time 310 s

MSE 35.8328
MAE 5.3346
R2 86.06%
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Case – #3 Neural Network Training
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Case #3 – Exact and Predicted Option Prices
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Case #3 – 3-d Surface of Absolute Error
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