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# GNA — Global Neutrino Analysis — high performance fitter based on data flow scheme:
* Laziness

* Caching

" Workflow — compile once and build at runtime:

* Frontend: Python ’
* Backend: GNA core (C++) [9000] "8

* Potential support for other backends: TensorFlow, ...

OscProb b—

" Representation — everything is accessible and annotated:
* Print variables
* Plot graph structure
* Plot graph data

https://astronu.jinr.ru/wiki/index.php/GNA E.


https://astronu.jinr.ru/wiki/index.php/GNA

Example: neutrino oscillation probability

E = C.Points(np.arange(1.0, 10.0, 0.001))
with ns:
oscprob = C.0scProb3(from_nu, to_nu) [9000]
unity = C.FillLike(1)
ws = C.WeightedSum(weights, labels)

>> unity.£ill a
>> oscprob.compl2 [9000]
>> oscprob.comp13

>> oscprob.comp23

Energy

@_D‘

E
E
E
E

unity >> ws.sum.compO
oscprob.compl2 >> ws.sum.iteml2
oscprob.compl3 >> ws.sum.iteml3

oscprob.comp23 >> ws.sum.item23

Paur = Po+ Y _ wi(f12, 013, 023) cos (C

1
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E
T Nodes are only evaluated if they have changed

¥ Each nodes result is cached and reused



Example: neutrino oscillation pro

E = C.Points(np.arange(1.0, 10.0, 0.001))
with ns:
oscprob = C.0scProb3(from_nu, to_nu) ? Energy
unity = C.FillLike(1)
ws = C.WeightedSum(weights, labels)

>> unity.fill N
TN 3
>> oscprob.compl2 ( DeltaMSq13-0.0025228912

{ DeltaMSq13
>> oscprob.compl3 >

MM omm

>> oscprob.comp23

unity >> ws.sum.comp0
oscprob.compl2 >> ws.sum.iteml2 ( gt 12-0.404836197200
oscprob.compl3 >> ws.sum.iteml3 > weight12

oscprob.comp23 >> ws.sum.item23

. -
( Weight23-0.01302359712
weight23

" Variables are maintained in recursive namespace

" Nodes do not own variables they depend upon

@_D-

How to scale?



¥ Bundles were created in order to facilitate making small computational graphs and scale them
based on a simple configuration

¥ Bundles are able:

* Read a configuration dictionary, which contain:

Bundle name and version number, telling GNA which bundle to load to read the configuration
Multidimensional index, defining how the bundle should replicate the parameters and/or nodes
Other configuration, specific to a particular bundle

* Access environment and define a set of variables, required by the transformations chain it builds

* Create and bind a set of nodes. Register the open inputs and outputs so other bundles may
access them

* Require inputs and outputs, provided by the other transformations and bind them



GNA Daya Bay implementation

Simplified view

" Single detector

¥ Single reactor

 Single isotope

¥~ 1/10th of the full graph

Full graph

¥ Current configuration:
* ~ 500 nodes
* ~ 1000 edges

¥ Depending on structure may be
2500 nodes

http://gna.pages.jinr.ru/gna/gallery.html HOW to set ?


http://gna.pages.jinr.ru/gna/gallery.html
http://gna.pages.jinr.ru/gna/gallery.html

GNA expressions

* Goal:

+ Math-like expression — graph

' GNA DSL objects:

* Transformations <— vector objects

* Solution:

+ DSL — Domain-Specific Language

* Variables <— scalar objects

* Indices, arithmetic operations

* Advantages: (+,—, *,...), brackets, ...

« One expression for various backends
+ Some natural scaling rule (indices)

« Graph preprocessing



Experiment with reactor antineutrinos: formula

Partial expression Partial equation

eres[d] | /\7d = CeresX
1lsnl [d] | Clsnl X
iav([d] | Ciav X
integral2d|

mees / d cos / dEyis Z
baselineweight [r,d]* 1/(47rL5,)
ibd_xsec(enu(), ctheta())x* do(E,,cos0)/d cos
jacobian(enu(), ee(), ctheta()) dE, /dEyis

sum[i] (

P riSi EI/

power_livetime_factor[d,r,i])* Z (Pansi(E))

anuspec[i] (enu() )* :

- Energy resolution —

# a|blcxd = a(b(c*d)))



Parser implementation

Current GNA implementation: New implementation:

* Pure Python: ¥ Designed as a completely stand-alone module:
* Cumbersome * Parser based on Lark-Parser:
* Excessiveness Fast and strict parser algorithm LALR(1)

« Difficulty in improving Small grammar file (in this talk ~ 50 — 100 lines)

Easy to modif;
# Lack of abstractness (made in and Y Y

hi
for GNA framework only) Caching

* Graph features based on PyGraphviz
+ Suitable for different backends

* Separation of roles: parser, builders, matchers,
data classes, tests, ...

* Representation: trees, graphs, text view, ...

https://lark-parser.readthedocs.io/en/latest/index.html 9


https://lark-parser.readthedocs.io/en/latest/index.html
https://lark-parser.readthedocs.io/en/latest/index.html

Parsing tree and pattern matching

Data to parse Parsing tree for the red sequence

Object = nsl.ns2.norms[k] *

Transf_1 + Transf_2 | QMatrix @
Energy * (conversion_factor *
duty_cycle * efflivetime *
fission_fractions_scale *
global_norm * target_protons *

thermal _power_nominal *

thermal_power_scale) +

Spectrum[j,1] @ Matrix

Part of the library with patterns

powerlivetime_factor:
expr: 'conversion_factor*duty_cyclexefflivetimex
* This is a pattern matching feature! fission_fractions_scalexglobal_norm*target_protons*
thermal_power_nominal*thermal_power_scale'

& i ing!
The formula has no phyS|ca| meaning: label: 'Power/Livetime/Mass factor, nominal' 10



Building graph

Data to parse Full parsing tree

Object = nsl.ns2.norms[k] *

Transf_1 + Transf_2 | (QMatrix @

Energy * (conversion_factor * p———

o

duty_cycle * efflivetime *
fission_fractions_scale * .
Final graph
global_norm * target_protons *
thermal _power_nominal *
thermal_power_scale) +

Spectrum[j,1] @ Matrix

& Simple graph supporting scaling!
ok

product 0, sum_0, ... — automatically

generated nodes for operations '+', "*’, ...

powerlivetime_factor. 11



Conclusions

¥ Conclusions:

# The GNA DSL has been developed that is suitable for various (potential!) backends and
naturally enables a scalability of physical models

* A similar solution is applicable for any data flow scheme

* Can be developed completely separately from the main project (this was done in the GNA)

 Current status:
* Merging the Parser module with GNA framework

* Testing on the real physical model

Thank you for your attention!
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