Russian
Science
Foundation

RSF

* Grammar parser-based solution for the description of the
computational graph within GNA framework?

Tsegelnik Nikitab, Gonchar Maxim, Treskov Konstantin
Joint Institute for Nuclear Research

July 6, 2021

2The research is supported by the Russian Science Foundation grant 21-42-00023
btsegelnik@jinr.ru

GNA — Global Neutrino Analysis — high performance fitter based on data flow scheme:
* Laziness

* Caching

" Workflow — compile once and build at runtime:

* Frontend: Python ’
* Backend: GNA core (C++) [9000] "8

* Potential support for other backends: TensorFlow, ...

OscProb b—

" Representation — everything is accessible and annotated:
* Print variables
* Plot graph structure
* Plot graph data

https://astronu.jinr.ru/wiki/index.php/GNA E.

https://astronu.jinr.ru/wiki/index.php/GNA

Example: neutrino oscillation probability

E = C.Points(np.arange(1.0, 10.0, 0.001))
with ns:
oscprob = C.0scProb3(from_nu, to_nu) [9000]
unity = C.FillLike(1)
ws = C.WeightedSum(weights, labels)

>> unity.£ill a
>> oscprob.compl2 [9000]
>> oscprob.comp13

>> oscprob.comp23

Energy

@_D‘

E
E
E
E

unity >> ws.sum.compO
oscprob.compl2 >> ws.sum.iteml2
oscprob.compl3 >> ws.sum.iteml3

oscprob.comp23 >> ws.sum.item23

Paur = Po+ Y _ wi(f12, 013, 023) cos (C

1

LAmiZ)

E
T Nodes are only evaluated if they have changed

¥ Each nodes result is cached and reused

Example: neutrino oscillation pro

E = C.Points(np.arange(1.0, 10.0, 0.001))
with ns:
oscprob = C.0scProb3(from_nu, to_nu) ? Energy
unity = C.FillLike(1)
ws = C.WeightedSum(weights, labels)

>> unity.fill N
TN 3
>> oscprob.compl2 (DeltaMSq13-0.0025228912

{ DeltaMSq13
>> oscprob.compl3 >

MM omm

>> oscprob.comp23

unity >> ws.sum.comp0
oscprob.compl2 >> ws.sum.iteml2 (gt 12-0.404836197200
oscprob.compl3 >> ws.sum.iteml3 > weight12

oscprob.comp23 >> ws.sum.item23

. -
(Weight23-0.01302359712
weight23

" Variables are maintained in recursive namespace

" Nodes do not own variables they depend upon

@_D-

How to scale?

¥ Bundles were created in order to facilitate making small computational graphs and scale them
based on a simple configuration

¥ Bundles are able:

* Read a configuration dictionary, which contain:

Bundle name and version number, telling GNA which bundle to load to read the configuration
Multidimensional index, defining how the bundle should replicate the parameters and/or nodes
Other configuration, specific to a particular bundle

* Access environment and define a set of variables, required by the transformations chain it builds

* Create and bind a set of nodes. Register the open inputs and outputs so other bundles may
access them

* Require inputs and outputs, provided by the other transformations and bind them

GNA Daya Bay implementation

Simplified view

" Single detector

¥ Single reactor

 Single isotope

¥~ 1/10th of the full graph

Full graph

¥ Current configuration:
* ~ 500 nodes
* ~ 1000 edges

¥ Depending on structure may be
2500 nodes

http://gna.pages.jinr.ru/gna/gallery.html HOW to set ?

http://gna.pages.jinr.ru/gna/gallery.html
http://gna.pages.jinr.ru/gna/gallery.html

GNA expressions

* Goal:

+ Math-like expression — graph

' GNA DSL objects:

* Transformations <— vector objects

* Solution:

+ DSL — Domain-Specific Language

* Variables <— scalar objects

* Indices, arithmetic operations

* Advantages: (+,—, *,...), brackets, ...

« One expression for various backends
+ Some natural scaling rule (indices)

« Graph preprocessing

Experiment with reactor antineutrinos: formula

Partial expression Partial equation

eres[d] | /\7d = CeresX
1lsnl [d] | Clsnl X
iav([d] | Ciav X
integral2d|

mees / d cos / dEyis Z
baselineweight [r,d]* 1/(47rL5,)
ibd_xsec(enu(), ctheta())x* do(E,,cos0)/d cos
jacobian(enu(), ee(), ctheta()) dE, /dEyis

sum[i] (

P riSi EI/

power_livetime_factor[d,r,i])* Z (Pansi(E))

anuspec[i] (enu())* :

- Energy resolution —

a|blcxd = a(b(c*d)))

Parser implementation

Current GNA implementation: New implementation:

* Pure Python: ¥ Designed as a completely stand-alone module:
* Cumbersome * Parser based on Lark-Parser:
* Excessiveness Fast and strict parser algorithm LALR(1)

« Difficulty in improving Small grammar file (in this talk ~ 50 — 100 lines)

Easy to modif;
Lack of abstractness (made in and Y Y

hi
for GNA framework only) Caching

* Graph features based on PyGraphviz
+ Suitable for different backends

* Separation of roles: parser, builders, matchers,
data classes, tests, ...

* Representation: trees, graphs, text view, ...

https://lark-parser.readthedocs.io/en/latest/index.html 9

https://lark-parser.readthedocs.io/en/latest/index.html
https://lark-parser.readthedocs.io/en/latest/index.html

Parsing tree and pattern matching

Data to parse Parsing tree for the red sequence

Object = nsl.ns2.norms[k] *

Transf_1 + Transf_2 | QMatrix @
Energy * (conversion_factor *
duty_cycle * efflivetime *
fission_fractions_scale *
global_norm * target_protons *

thermal _power_nominal *

thermal_power_scale) +

Spectrum[j,1] @ Matrix

Part of the library with patterns

powerlivetime_factor:
expr: 'conversion_factor*duty_cyclexefflivetimex
* This is a pattern matching feature! fission_fractions_scalexglobal_norm*target_protons*
thermal_power_nominal*thermal_power_scale'

& i ing!
The formula has no phyS|ca| meaning: label: 'Power/Livetime/Mass factor, nominal' 10

Building graph

Data to parse Full parsing tree

Object = nsl.ns2.norms[k] *

Transf_1 + Transf_2 | (QMatrix @

Energy * (conversion_factor * p———

o

duty_cycle * efflivetime *
fission_fractions_scale * .
Final graph
global_norm * target_protons *
thermal _power_nominal *
thermal_power_scale) +

Spectrum[j,1] @ Matrix

& Simple graph supporting scaling!
ok

product 0, sum_0, ... — automatically

generated nodes for operations '+', "*’, ...

powerlivetime_factor. 11

Conclusions

¥ Conclusions:

The GNA DSL has been developed that is suitable for various (potential!) backends and
naturally enables a scalability of physical models

* A similar solution is applicable for any data flow scheme

* Can be developed completely separately from the main project (this was done in the GNA)

 Current status:
* Merging the Parser module with GNA framework

* Testing on the real physical model

Thank you for your attention!

12

Russian
Science
Foundation

RSF

* Grammar parser-based solution for the description of the
computational graph within GNA framework?

Tsegelnik Nikitab, Gonchar Maxim, Treskov Konstantin
Joint Institute for Nuclear Research

July 6, 2021

2The research is supported by the Russian Science Foundation grant 21-42-00023
btsegelnik@jinr.ru

13

	S: GNA overview
	S: Example: neutrino oscillation probability
	S: Example: neutrino oscillation probability
	S: Bundles
	S: GNA Daya Bay implementation
	S: GNA expressions
	S: Parser implementation
	S: Parsing tree and pattern matching
	S: Building graph
	S: Conclusions

