

Data Center Simulation for the BM@N experiment of the NICA Project

D. PRIAKHINA¹, V. TROFIMOV¹, V. KORENKOV¹,

K. GERTSENBERGER²

08.07.2020

¹ Meshcheryakov Laboratory of Information Technologies, JINR
 ² Veksler and Baldin Laboratory of High Energy Physics, JINR

Introduction

The important task

Simulation of data storage and processing centers that come from experimental setups of the NICA complex, in particular, BM@N detector, or are generated using special software for checking of the developed data processing algorithms and for comparison with the expected physical result.

New approach to simulate

- Representation of information processes as byte streams.
- Using of probability distributions of significant data acquisition processes – the probabilities of loss of incoming information should be determined for different configurations of the data centers equipment.

Main simulation goal

Determine the hardware configuration that will ensure the operability of the data storage and processing system – takes into account hardware parameters and expected data flows and jobs.

The simulation software complex

08.07.2020

9TH INTERNATIONAL CONFERENCE "DISTRIBUTED COMPUTING AND GRID TECHNOLOGIES IN SCIENCE AND EDUCATION" (GRID'2021)

3

Stages of the software complex

The simulated structure

9TH INTERNATIONAL CONFERENCE "DISTRIBUTED COMPUTING AND GRID TECHNOLOGIES IN SCIENCE AND EDUCATION" (GRID'2021)

Data processing

9TH INTERNATIONAL CONFERENCE "DISTRIBUTED COMPUTING AND GRID TECHNOLOGIES IN SCIENCE AND EDUCATION" (GRID'2021)

Classes of jobs

N∘	Class	Event processing time on one processor (ms)	The average amount of input (GB)	Number of events in the file (1 file = 1 job)	Job execution time (s)	The average amount of output (GB)	Number of jobs
1	RawToDigit	350 (HPC) 1 000 (NCX)	35	175 000	61 250 (HPC) 175 000 (NCX)	1	15 552
2	DigitToDst	150 (HPC) 430 (NCX)	1	175 000	26 250 (HPC) 75 250 (NCX)	1	15 552
3	GenToSim	60	0,6	175 000	10 500	8	300
4	SimToDst	30	8	175 000	5 250	1	300
5	DstToAna	10	1	175 000	1 750	0,1	1 000

TO DO: simulating the process of data processing for the BM@N experiment for the subsequent quality evaluation of the obtained distribution of job flows across the available processing centers.

Scenarios for executing jobs

Nº	Class	Location of the executing jobs / % of jobs					
		Scenario 1	Scenario 2	Scenario 3			
1	RawToDigit	NCX LHEP / 50% T2 LIT / 15% Supercomputer / 35%	NCX LHEP / 80% T2 LIT / 10%	T2 LIT / 10% Supercomputer / 90%			
2	DigitToDst	NCX LHEP / 50% T2 LIT / 15% Supercomputer / 35%	NCX LHEP / 80% T2 LIT / 10%	T2 LIT / 10% Supercomputer / 90%			
3	GenToSim	T2 LIT / 20% Supercomputer / 80%	Supercomputer / 100%	NCX LHEP / 100%			
4	SimToDst	T2 LIT / 20% Supercomputer / 80%	Supercomputer / 100%	NCX LHEP / 100%			
5	DstToAna	T2 LIT / 20% Supercomputer / 80%	NCX LHEP / 70% T2 LIT / 10% Supercomputer / 20%	NCX LHEP / 80% T2 LIT / 20%			
08.07.2020 9TH INTERNATIONAL CONFERENCE "DISTRIBUTED COMPUTING AND GRID TECHNOLOGIES IN SCIENCE AND EDUCATION" (GRID'2021) 8							

Results of Scenario 1 RawToDigit jobs

Total number: 15 552

T2 LIT farm: **500 slots**

LHEP farm: 400 slots 50% jobs - 7 776 Execut. time - 175 000 s

- Completed ≈1 500 jobs by 720 h
- All jobs will be completed for ≈1 700 h after finish session

08.07.2020

- Completed ≈1 400 jobs by 720 h
- All slots are occupied. All slots are occupied. Processing jobs is stopped

Supercomputer: 200 slots 35% jobs - 5 443 Execut. time - 61 250 s

- Completed ≈1 900 jobs by 720 h
- Processing jobs is stopped

Only 30% of all jobs session can be processed by 720 h

Results of Scenario 1 DigitToDst jobs

Total number: 15 552

T2 LIT farm: **500 slots**

- Completed ≈1 500 jobs by 720 h
- All jobs will be completed for ≈1 700 h after finish session

08.07.2020

- Completed ≈1 500 jobs by 720 h
- All slots are occupied. All slots are occupied. Processing jobs is stopped

- Completed ≈1 800 jobs by 720 h
- Processing jobs is stopped

Only 30% raw data will be converted to reconstruction data by 720 h

Results of Scenario 1 GenToSim jobs

Completed all jobs by 200 h

08.07.2020

Time (h)

Completed all jobs by 600 h

Time (h)

11

100% jobs can be processed

Results of Scenario 1 SimToDst jobs

Total number: 300

- Completed ≈80 jobs by 720 h
- All slots are occupied.
 Processing jobs is stopped

Supercomputer: 200 slots 70% jobs – 210 Execut. time – 5 200 s Completed SimToDst jobs on the Supercomputer

- Completed ≈180 jobs by 720 h
- All slots are occupied.
 Processing jobs is stopped

90% of simulation data will be converted to reconstruction data

08.07.2020

Results of Scenario 1 DstToAna jobs

- Completed 8 jobs by 720 h
- All slots are occupied.
 Processing jobs is stopped

08.07.2020

- Completed 16 jobs by 720 h
- All slots are occupied.
 Processing jobs is stopped

Only 2% of all analyze jobs can be processed

Results of Scenario 1 Free slots

All slots are occupied on all resources

08.07.2020

14

Results of Scenario 1 Conclusions

- Only 30% raw data will be converted to reconstruction data (during session – 30 days).
- 90% of simulation data will be converted to reconstruction data by 720 h.
- We will have to wait several more months until the end of processing all the raw data after the end of the session.
- > There are not enough resources for data analysis.

This jobs allocation scenario is not suitable!

Results of Scenarios 2 & 3 Conclusions

The results obtained were similar to the results of the first scenario.

Scenario 2	Scenario 3					
10%	15%					
of all jobs session can be processed by 720 h						
1.5%	1%					
of raw data will be converted	of raw data will be converted to reconstruction data by 720 h					
100%	100%					
of simulation data will be cc	of simulation data will be converted to reconstruction data					
LHEP farm & T2 LIT farm	LHEP farm & Supercomputer					
all slots are occupied						
This jobs allocation scenarios are not suitable!						

9TH INTERNATIONAL CONFERENCE "DISTRIBUTED COMPUTING AND GRID TECHNOLOGIES IN SCIENCE AND EDUCATION" (GRID'2021)

Total conclusions

- 1. Model data analysis can be done on one of computing resources.
- 2. Full processing a single file with experimental data takes a lot of time.

Scenario 4 with express file processing.

Express processing should be run simultaneously with full processing.

Express processing: 1% of file (350 MB) on LHEP farm and T2 LIT farm.

Results of Scenario 4 RawToDigit jobs

iobs

pleted

<u>T2 LIT farm: 500 slots</u> 15% jobs - 2 333

Supercomputer: 200 slots 35% jobs - 5 443

08.07.2020

18

Other results

per session – 338 TB

- Maximum load of link to the LHEP farm – 90 MB / sec
- Maximum load of link to the LIT farm – 50 MB / sec

08.07.2020

Conclusions and Outlook

- Developed a tool for modeling the process of data acquisition and processing.
- Based on the simulation results, we can predict problems that may appear during the experiment and data processing.
- 3 scenarios (which are provided by physicists) for executing jobs are modeled. Some problems were found:
 - model data analysis can be done on one of computing resources;
 - o full processing a single file with experimental data takes a lot of time.
- We offer scenario with express file processing to solve problems. Results: 45% of all jobs session can be processed by 720 h.

> Next steps:

08.07.2020

developing module like pilot for starting jobs;

 conducting computational experiments taking into account the fact that the equipment does not have absolute reliability (calculating probability of equipment failure and recovery times).

Thank you for the attention!

D. PRIAKHINA¹, V. TROFIMOV¹, V. KORENKOV¹, K. GERTSENBERGER²

¹ Meshcheryakov Laboratory of Information Technologies, JINR
 ² Veksler and Baldin Laboratory of High Energy Physics, JINR

