
VM based Evaluation of the Scalable
Parallel Minimum Spanning Tree
Algorithm for PGAS Model
Authors: V. Bejanyan (MSc), H. Astsatryan (PhD, HDR)

Organization: Center for Scientific Computing,
 Institute for Informatics and Automation Problems,

 National Academy of Sciences of the Republic of Armenia

Conference: 9th International Conference "Distributed Computing and Grid Technologies in Science and
Education", Dubna, Russia

Date: June 10, 2021

Contents
1. Problem statement

○ Introduction to Minimum Spanning Tree (MST)
○ Traditional approaches to address the MST
○ Emerging alternatives: PGAS
○ Problem

2. Our solution
○ Workflow
○ Components
○ Algorithm

3. Evaluation and analyzes
4. Conclusion

MST is a building block for many applications, such as finding approximate solutions
for complex mathematical problems. There are several well-known MST algorithms,
such as:

● Prim - Repeatedly adds minimum cost edge to the MST with one end inside the
tree and another outside.

● Kruskal - Builds the forests of the minimum spanning tree and joins them by
minimum cost edges.

● Boruvka - Keeps track of connected components, initially, every component
consists of a single vertex, then merges components by minimum cost edge.

1. Problem statement - MST

1. Problem statement - Traditional approaches

Usually parallelized in terms of shared memory (e.g. OpenMP intra-node):

● Memory can act as a limiting factor for shared memory systems.

Distributed memory (MPI inter-node):

● Graphs usually implemented using adjacency matrices.
● Matrices are copied over different ranks as chunks.
● Not well suited for computations with irregular access patterns.

1. Problem statement - Emerging alternatives (PGAS)

No known implementation using UPCXX for Partitioned Global Address Space (PGAS).

UPCXX allows us to:

● Base computation on asynchronous communication implemented in terms of futures.
○ Remote procedure calls (RPC) to execute code on different processing nodes.
○ RPC returns a feature helpful for computation and communication overlapping.

● Store data in public address space and share using distributed objects.
○ Distributed objects are passed as modifiable rank-aware arguments to the RPCs.
○ Built-in serialization for several STL containers.

● Barriers to global synchronization.

1. Problem statement: objective

● To study PGAS model using UPCXX:
○ Implement graph generation.
○ Implement MST solver.
○ Benchmarking and evaluations to identify bottlenecks and

possibilities for future improvements.

2. Our solution - Overview

A PGAS system consists of the following
components:

● A set of processors, each with attached local
storage.

● A mechanism by which at least a part of each
processor’s storage can be shared with others.

● Every shared memory location has an affinity -
a processor on which the location is local and
therefore the access is quick.

2. Our solution - PGAS

2. Our solution - UPCXX essentials

UPC++ is a C++ library to support the PGAS programming, and is designed to
interoperate smoothly and efficiently with MPI, OpenMP, CUDA. It leverages
GASNet-EX to deliver low-overhead, fine-grained communication, including Remote
Memory Access (RMA) and Remote Procedure Call (RPC).

● RMA. UPC++ provides asynchronous one-sided communication (RMA, a.k.a. Put
and Get) for the movement of the data among processes.

● RPC. UPC++ provides asynchronous RPC for running code (including C++
lambdas) on other processes.

https://gasnet.lbl.gov/
https://gasnet.lbl.gov/

2. Our solution - UPCXX essentials

● Futures, promises and continuations. Futures are central to handling asynchronous
operation of RMA and RPC. UPC++ uses a continuation-based model to express task
dependencies.

● Global pointers and memory kinds. UPC++ provides uniform interfaces for RMA
transfers among host and device memories, including a reference implementation for
CUDA GPUs.

● Distributed objects. UPC++ enables construction of a scalable distributed object from
any C++ object type, with one instance on each rank of a team. RPC can be used to
access remote instances.

● Serialization. UPC++ introduces several complementary mechanisms for efficiently
passing large and/or complicated data arguments to RPCs.

2. Our solution - Graph generation algorithm

2. Our solution - Graph generation algorithm

● Lists of connected and unconnected vertices are used to ensure connectivity of the core. Every

time the vertex is added to the core it’s being removed from unconnected vertices list and added

into connected.

● Distributed counter is used to ensure that there are no duplications in edge weights.

● Number of the extra edges is connected based on the connectivity percentage to populate the

core.

● Ranks are iterated in a pairware manner to populate graph with inter node edges. Lambda is used

as a mapper to translate random vertex ID into local ID.

3. Evaluation results - Computational architecture

The nano, micro, small, medium, and large type
instances of the Armenian IaaS cloud have been used

3. Evaluation results - Graph generation
Multi-node with distributed memory

3. Evaluation results - Graph generation
Symmetric multiprocessor with shared memory

3. Evaluation results - MST
Multi-node with distributed memory

3. Evaluation results - MST
Symmetric multiprocessor with shared memory

4. Conclusion

● The Kruskal algorithm modification for PGAS model using UPCXX presented.
● Experimental results shows that:

○ Graph generation has pool scalability for both shared and distributed
memory systems

○ MST has high scalability for both shared and distributed memory systems
● The implementation and all results are available at

https://github.com/lnikon/pgas-graph

5. Future Work

● Planned to explore scalable and high performance algorithms for graph
clustering, centrality, link analysis in the scope of open source PGAS graph
algorithms library.

● Investigate Chapel Programming Language capabilities in the scope of
GraphBLAS project.

● Provide easily deployable client-server application for HPC graph
experimentation on cloud.

Thank you,

any questions?

